Tutorial: Analysis of Integrated and Cointegrated Time Series

Dr. Bernhard Pfaff bernhard_pfaff@fra.invesco.com

Invesco Asset Management Deutschland GmbH, Frankfurt am Main

The R User Conference 2008, August 12–14, Technische Universität Dortmund, Germany Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Tim Series VAR SVAR Cointegration SVEC Topics Left Out Monographs

Contents

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR SVAR Cointegration SVEC

Topics Left Out

Monographs

R packages

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs

Univariate Time Series

Overview

- Definitions
- Representations / Models
- Non-stationary processes
- Statistical tests

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

- Monographs
- R packages

Stochastic Process

Time Series

A discrete *time series* is defined as an ordered sequence of random numbers with respect to time. More formally, such a *stochastic process* can be written as:

$$\{y(s,t), s \in \mathfrak{S}, t \in \mathfrak{T}\}, \qquad (1)$$

where for each $t \in \mathfrak{T}$, $y(\cdot, t)$ is a random variable on the sample space \mathfrak{S} and a realization of this stochastic process is given by $y(s, \cdot)$ for each $s \in \mathfrak{S}$ with regard to a point in time $t \in \mathfrak{T}$.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Tim Series VAR SVAR Cointegration SVEC Topics Left Out

Monographs

Stochastic Process: Examples

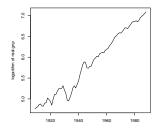




Figure: U.S. GNP

Figure: U.S. unemployment rate

```
> library(urca)
> data(npext)
> y <- ts(na.omit(npext$realgnp), start = 1909, end = 1988, frequency = 1)
> z <- ts(exp(na.omit(npext$unemploy)), start = 1909, end = 1988, frequency = 1)
> plot(y, ylab = "logarithm of real gnp")
> plot(z, ylab = "unemployment rate in percent")
```

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Stationarity

Weak Stationarity

The ameliorated form of a stationary process is termed weakly stationary and is defined as:

$$E[y_t] = \mu < \infty, \forall t \in \mathfrak{T} , \qquad (2a)$$

$$E[(y_t - \mu)(y_{t-j} - \mu)] = \gamma_j, \forall t, j \in \mathfrak{T} .$$
^(2b)

Because only the first two theoretical moments of the stochastic process have to be defined and being constant, finite over time, this process is also referred to as being *second-order stationary* or *covariance stationary*.

Strict Stationarity

The concept of a strictly stationary process is defined as:

$$F\{y_1, y_2, \dots, y_t, \dots, y_T\} = F\{y_{1+j}, y_{2+j}, \dots, y_{t+j}, \dots, y_{T+j}\},\$$

where $F\{\cdot\}$ is the joint distribution function and $\forall t, j \in \mathfrak{T}$.

Note:

Hence, if a process is strictly stationary with finite second moments, then it must be covariance stationary as well. Although a stochastic processes can be set up to be covariance stationary, it need not be a strictly stationary process. It would be the case, for example, if the mean and auto-covariances would not be functions of time but of higher moments instead. Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs

(3)

White Noise

Definition

A white noise process is defined as:

$$E(\varepsilon_t) = 0$$
, (4a)

$$E(\varepsilon_t^2) = \sigma^2 , \qquad (4b)$$

$$E(\varepsilon_t \varepsilon_\tau) = 0$$
 for $t \neq \tau$. (4c)

When necessary, ε_t is assumed to be normally distributed: $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$. If Equations 4a–4c are amended by this assumption, then the process is said to be a *normal-* or *Gaussian white noise* process. Furthermore, sometimes Equation 4c is replaced with the stronger assumption of independence. If this is the case, then the process is said to be a *independent white noise* process. Please note that for normally distributed random variables, uncorrelatedness and independence are equivalent. Otherwise, independence is sufficient for uncorrelatedness but not vice versa.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out

White Noise: Example

R. code

> set.seed(12345) > gwn <- rnorm(100) > layout(matrix(1:4, ncol = 2, nrow = 2)) > plot.ts(gwn, xlab = "", ylab = "") > abline(h = 0, col = "red") > acf(gwn, main = "ACF") > qqnorm(gwn) > pacf(gwn, main = "PACF")

R Output

8 ÅČ,

ACF

Lag

3

Normal Q=Q Plot ÷1. ò

> 10 15 20

Lag

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Definitions

Ergodicity

Definition

Ergodicity refers to one type of asymptotic independence. More formally, asymptotic independence can be defined as

$$|F(y_1, \ldots, y_T, y_{j+1}, \ldots, y_{j+T}) - F(y_1, \ldots, y_T)F(y_{j+1}, \ldots, y_{j+T})| \to 0,$$
(5)

with $j \to \infty$. The joint distribution of two subsequences of a stochastic process $\{y_t\}$ is equal to the product of the marginal distribution functions the more distant the two subsequences are from each other. A stationary stochastic process is ergodic if

$$\lim_{T \to \infty} \left\{ \frac{1}{T} \sum_{j=1}^{T} E[y_t - \mu][y_{t+j} - \mu] \right\} = 0 , \qquad (6)$$

holds. This equation would be satisfied if the auto-covariances tend to zero with increasing j.

In prose:

Asymptotic independence means that two realizations of a time series become ever closer to independence, the further they are apart with respect to time.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Wold Decomposition

Theorem

Any covariance stationary time series $\{y_t\}$ can be represented in the form:

$$y_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j} , \ \varepsilon_t \sim WN(0, \sigma^2)$$
 (7a

$$\psi_0=1$$
 and $\sum_{j=0}^{\infty}\psi_j^2<\infty$

Characteristics

- Fixed mean: $E[y_t] = \mu$:
- Finite variance: $\gamma_0 = \sigma^2 \sum_{j=0}^{\infty} \psi_j^2 < \infty$.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Representation / Models

(7b)

- Autoregressive moving average models (ARMA)
- Approximate Wold form of a stationary time series by a parsimonious parametric model
- ARMA(p,q) model:

$$y_{t} - \mu = \phi_{1}(y_{t-1} - \mu) + \ldots + \phi_{p}(y_{t-p} - \mu) + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \ldots + \theta_{q}\varepsilon_{t-q}$$
(8)
$$\varepsilon_{t} \sim WN(0, \sigma^{2})$$

• Extension for integrated time series: ARIMA(p, d, q) model class.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests Multivariate Time Series VAR SVAR Cointegration SVEC

Fopics Left Out Monographs R packages

Procedure

- If necessary, transform data, such that covariance stationarity is achieved.
- Inspect, ACF and PACF for initial guesses of p and q.
- Stimate proposed model.
- Oheck residuals (diagnostic tests) and stationarity of process.
- If item 4 fails, go to item 2 and repeat. If in doubt, choose the more parsimonious model specification.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

 \mathbf{R} Resources

- Package dse1: ARMA
- Package fArma: ArmaInterface, ArmaStatistics
- Package forecast: arima
- Package **mAr**: mAr.eig, mAr.est, mAr.pca
- Package stats: ar, arima, acf, pacf, ARMAacf, ARMAtoMA
- Package tseries: arma

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

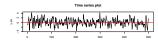
Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

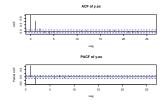
Example

\mathbf{R} code

```
> set.seed(12345)
> v.ex <- arima.sim(n = 500,
       list(ar = c(0.9, -0.4)))
> lavout(matrix(1:3, nrow = 3, ncol = 1))
> plot(y.ex, xlab = "",
       main = "Time series plot")
> abline(h = 0, col = "red")
> acf(y.ex, main = "ACF of y.ex")
> pacf(y.ex, main = "PACF of y.ex")
> arma20 <- arima(v.ex, order = c(2, 0, 0),
       include.mean = FALSE)
 result <- matrix(cbind(arma20$coef,
       sqrt(diag(arma20$var.coef))),
       nrow = 2
> rownames(result) <- c("ar1", "ar2")</pre>
> colnames(result) <- c("estimate", "s.e.")</pre>
```

R Output





R Output

	estimate	s.e.
ar1	0.90	0.04
ar2	-0.39	0.04

Table: ARMA(2, 0) Estimates

Figure: ARMA(2, 0), simulated

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models

Statistical Tests

General Remarks

- Many economic/financial time series exhibit trending behavior.
- Task: determine most appropriate form of this trend.
- Stationary time series: time invariants moments
- In distinction: non-stationary processes have time dependent moments (mostly mean and/or variance).

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Series VAR SVAR Cointegration SVEC Topics Left Out Monographs R packages

Time Series Decomposition

Trend-Cycle Decomposition Consider,

$$y_t = TD_t + Z_t$$

$$TD_t = \beta_1 + \beta_2 \cdot t$$

$$\phi(L)Z_t = \theta(L)\varepsilon_t \text{ with } \varepsilon_t \sim WN(0, \sigma^2) \text{ , with}$$

$$\phi(L) = 1 - \phi_1 L - \ldots - \phi_p L^p \text{ and}$$

$$\theta(L) = 1 + \theta_1 L + \ldots + \theta_q L^q$$

Assumptions:

- φ(z) = 0 has at most one root on the complex unit circle.
- $\theta(z) = 0$ has all roots outside the unit circle.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-Atalionary Processes Statistical Tests Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs R packages

(9)

Trend Stationary Time Series

Definition

The series y_t is trend stationary if the roots of $\phi(z) = 0$ are outside the unit circle.

- $\phi(L)$ is invertible.
- Z_t has the Wold representation:

$$Z_t = \phi(L)^{-1} \theta(L) \varepsilon_t$$

= $\psi(L) \varepsilon_t$ (10)

with
$$\psi(L) = \phi(L)^{-1}\theta(L) = \sum_{j=0}^{\infty} \psi_j L^j$$
 and $\psi_0 = 1$ and $\psi(1) \neq 0$.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Non-stationary Processes

Trend Stationary Time Series: Example

\mathbf{R} code

${\rm R}\xspace$ Output

> set.seed(12345)
> y.tsar2 <- 5 + 0.5 * seq(250) +
+ arima.sim(list(ar = c(0.8, -0.2)), n = 250)
> plot(y.tsar2, ylab="", xlab = "")
> abline(a=5, b=0.5, col = "red")

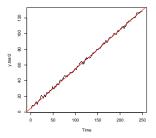


Figure: Trend-stationary series

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out

Difference Stationary Time Series

Definition

The series y_t is difference stationary if $\phi(z) = 0$ has one root on the unit circle and the others are outside the unit circle.

• $\phi(L)$ can be factored as

$$\phi(L) = (1 - L)\phi^*(L) \text{ whereby}$$
(11)

 $\phi^*(z) = 0$ has all p - 1 roots outside the unit circle.

- ΔZ_t is stationary and has an ARMA(p-1, q) representation.
- If Z_t is difference stationary, then Z_t is integrated of order one: Z_t ~ I(1).
- Recursive substitution yields: $y_t = y_0 + \sum_{j=1}^t u_j$.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests Multivariate Time Series VAR SVAR Cointegration

```
Topics Left Out
Monographs
R packages
```

Difference Stationary Time Series: Example

${\rm R}\,\,\text{code}$

> set.seed(12345) > u.ar2 <- arima.sim(+ list(ar = c(0.8, -0.2)), n = 250) > y1 <- cumsum(u.ar2) > TD <- 5.0 + 0.7 * seq(250) > y1.4 <- y1 + TD > layout(matrix(1:2, nrow = 2, ncol = 1)) > plot.ts(y1, main = "I(1) process without drift", + ylab="", xlab = "") > plot.ts(y1.d, main = "I(1) process with drift", + ylab="", xlab = "") > abline(a=5, b=0.7, col = "red")

R Output

I(1) process with drift

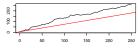


Figure: Difference-stationary series

Note: If $u_t \sim IWN(0, \sigma^2)$, then y_t is a random walk. Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs

Statistical Tests

Unit Root vs. Stationarity Tests

General Remarks

Consider, the following trend-cycle decomposition of a time series y_T :

$$y_t = TD_t + Z_t = TD_T + TS_t + C_t \text{ with}$$
(12)

 TD_t signifies the deterministic trend, TS_t is the stochastic trend and C_t is a stationary component.

- Unit root tests: H_0 : $TS_t \neq 0$ vs. H_1 : $TS_t = 0$, that is $y_t \sim I(1)$ vs. $y_t \sim I(0)$.
- Stationarity tests: H_0 : $TS_t = 0$ vs. H_1 : $TS_t \neq 0$, that is $y_t \sim I(0)$ vs. $y_t \sim I(1)$.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Autoregressive unit root tests General Remarks

Tests are based on the following framework:

$$y_t = \phi y_{t-1} + u_t , u_t \sim I(0)$$

•
$$H_0: \phi = 1, H_1: |\phi| < 1$$

- Tests: ADF- and PP-test.
- ADF: Serial correlation in *u_t* is captured by autoregressive parametric structure of test.
- PP: Non-parametric correction based on estimated long-run variance of Δy_t .

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Mon-stationary Processes Statistical Tests Multivariate Time Series VAR Svare

(13)

Cointegration SVEC

Topics Left Out

Monographs

Augmented Dickey-Fuller Test, I

Test Regression

$$y_{t} = \beta' D_{t} + \phi y_{t-1} + \sum_{j=1}^{p} \psi_{j} \Delta y_{t-j} + u_{t} , \qquad (14)$$

$$\Delta y_{t} = \beta' D_{t} + \pi y_{t-1} + \sum_{j=1}^{p} \psi_{j} \Delta y_{t-j} + u_{t} \text{ with } \pi = \phi - 1 \quad (15)$$

Test Statistic

$$ADF_t : t_{\phi=1} = \frac{\hat{\phi} - 1}{SE(\phi)}, \qquad (16)$$
$$ADF_t : t_{\pi=0} = \frac{\hat{\pi}}{SE(\pi)}. \qquad (17)$$

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs R packages

Augmented Dickey-Fuller Test, II

${\rm R}$ Resources

- Function ur.df in package urca.
- Function ADF.test in package uroot.
- Function adf.test in package tseries.
- Function urdfTest in package **fUnitRoots**.

Literature

- Dickey, D. and W. Fuller, Distribution of the Estimators for Autoregressive Time Series with a Unit Root, Journal of the American Statistical Society, 74 (1979), 427–341.
- Dickey, D. and W. Fuller, Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root, *Econometrica*, 49, 1057–1072.
- Fuller, W., Introduction to Statistical Time Series, 2nd Edition, 1996, New York: John Wiley.
- MacKinnon, J., Numerical Distribution Functions for Unit Root and Cointegration Tests, Journal of Applied Econometrics, 11 (1996), 601–618.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes

Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs

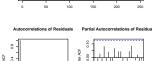
Augmented Dickey-Fuller Test, III

\mathbf{R} code

> library(urca) > y1.adf.nc.2 <- ur.df(y1, + type = "none", lags = 2) > dy1.adf.nc.2 <- ur.df(diff(y1), + type = "none", lags = 1) > plot(y1.adf.nc.2)

R Output

	Statistic	1pct	5pct	10pct
<i>y</i> 1	0.85	-2.58	-1.95	-1.62
Δy_1	-8.14	-2.58	-1.95	-1.62



Residuals

R Output

Table: ADF-test results

Figure: Residual plot of y1 ADF-regression

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes

Statistical Tests

```
Multivariate Time
Series
VAR
SVAR
Cointegration
SVEC
Topics Left Out
Monographs
```

R packages

Note:

Use critical values of Dickey & Fuller, Fuller or MacKinnon.

Autoregressive unit root tests Phillips & Perron Test, I

Test Regression

$$\Delta y_t = \beta' D_t + \pi y_{t-1} + u_t , u_t \sim I(0)$$

Test Statistic

$$Z_{t} = \left(\frac{\hat{\sigma}^{2}}{\hat{\lambda}^{2}}\right)^{1/2} \cdot t_{\pi=0} - \frac{1}{2} \left(\frac{\hat{\lambda}^{2} - \hat{\sigma}^{2}}{\hat{\lambda}^{2}}\right) \cdot \left(\frac{T \cdot SE(\hat{\pi})}{\hat{\sigma}^{2}}\right) , \quad (19)$$

$$Z_{\pi} = T\hat{\pi} - \frac{T \cdot SE(\pi)}{2\hat{\sigma}^2} \cdot (\hat{\lambda}^2 - \hat{\sigma}^2) .$$
⁽²⁰⁾

 $\hat{\lambda}$ and $\hat{\sigma}$ signify consistent estimates of the error variance.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Test Multivariate Time Series VAR SVAR SVAR SVAR SVAR SVAR SVAR

(18)

Aonographs

Autoregressive unit root tests Phillips & Perron Test, II

${\rm R}$ Resources

- Function ur.pp in package urca.
- Function pp.test in package tseries.
- Function urppTest in package fUnitRoots.
- Function PP.test in package stats.

Literature

- Phillips, P.C.B., Time Series Regression with a Unit Root, Econometrica, 55, 227–301.
- Phillips, P.C.B. and P. Perron, Testing for Unit Roots in Time Series Regression, *Biometrika*, 75, 335–346.

Tutorial: Analysis of Integrated and Cointegrated Time Series

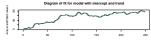
Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Phillips & Perron Test, III

\mathbf{R} code

R Output



	Statistic	1pct	5pct	10pct
<i>y</i> 1	-2.04	-4.00	-3.43	-3.14
Δy_1	-7.19	-4.00	-3.43	-3.14

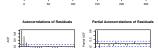


Table: PP-test results

Figure: Residual plot of y1 PP-regression

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Inivariate Time eries Definitions

Representation / Models Non-stationary Processes

Statistical Tests

```
Multivariate Time
Series
VAR
SVAR
Cointegration
SVEC
Topics Left Out
Monographs
R packages
```

Note:

Same asymptotic distribution as ADF-Tests.

Autoregressive unit root tests Remarks

- ADF and PP test are asymptotically equivalent.
- PP has better small sample properties than ADF.
- Both have low power against *I*(0) alternatives that are close to being *I*(1) processes.
- Power of the tests diminishes as deterministic terms are added to the test regression.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Efficient unit root tests

Elliot, Rothenberg & Stock, I

Model

 $y_t = d_t + u_t ,$ $u_t = au_{t-1} + v_t$

Test Statistics

• Point optimal test:

$$P_T = \frac{S(a=\bar{a}) - \bar{a}S(a=1)}{\hat{\omega}^2} , \qquad (23)$$

DF-GLS test:

$$\Delta y_t^d = \alpha_0 y_{t-1}^d + \alpha_1 \Delta y_{t-1}^d + \ldots + \alpha_p \Delta y_{t-p}^d + \varepsilon_t \qquad (24)$$

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

(21) (22) Statistical Tests

Efficient Unit Root Tests

Elliot, Rothenberg & Stock, II

\mathbf{R} Resources

- Function ur.ers in package urca.
- Function urersTest in package fUnitRoots.

Literature

 Elliot, G., T.J. Rothenberg and J.H. Stock, Efficient Tests for an Autoregressive Time Series with a Unit Root, *Econometrica*, 64 (1996), 813–836. Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tate

Aultineutete 7

Series VAR SVAR Cointegration SVEC Topics Left Out Monographs

Efficient Unit Root Tests

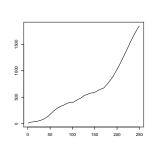
Elliot, Rothenberg & Stock, III

${\rm R}\,\,\text{code}$

> library(urca) > set.seed(12345) > u.ar1 <- arima.sim(+ list(ar = 0.99), n = 250) > TD <- 5.0 + 0.7 * seq(250) > y1.ni <- cumsum(u.ar1) + TD > y1.ers <- ur.ers(y1.ni, type = "P-test", + model = "trend", lag = 1) > y1.adf <- ur.df(y1.ni, type = "trend")</pre>

${\rm R}\xspace$ Output

	Statistic	1pct	5pct	10pct
ERS	33.80	3.96	5.62	6.89
ADF	-1.40	-3.99	-3.43	-3.13



R Output

Figure: Near I(1) process

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

nivariate Time eries Definitions Representation / Models

Statistical Tests

```
Multivariate Time
Series
VAR
SVAR
Cointegration
SVEC
Topics Left Out
Monographs
```

Unit Root Tests, Other Schmidt & Phillips, I

- Problem of DF-type tests: nuisance parameters, *i.e.*, the coefficients of the deterministic regressors, are either not defined or have a different interpretation under the alternative hypothesis of stationarity.
- Solution: LM-type test, that has the same set of nuisance parameters under both the null and alternative hypothesis.
- Higher polynomials than a linear trend are allowed.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Unit Root Tests, Other Schmidt & Phillips, II

Model

$$y_t = \alpha + Z_t \delta + x_t$$
 with $x_t = \pi x_{t-1} + \varepsilon_t$ (25)

Test Regression

$$\Delta y_t = \Delta Z_t \gamma + \phi \tilde{S}_{t-1} + v_t$$

Test Statistics

$$Z(\rho) = \frac{\tilde{\rho}}{\hat{\omega}^2} = \frac{T\tilde{\phi}}{\hat{\omega}^2}$$
(27)
$$Z(\tau)_{\phi=0} = \frac{\tilde{\tau}}{\hat{\omega}^2}$$
(28)

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Statistical Tests

(26)

Unit Root Tests, Other

Schmidt & Phillips, III

\mathbf{R} Resources

- Function ur.sp in package urca.
- Function urspTest in package fUnitRoots.

Literature

 Schmidt, P. and P.C.B. Phillips, LM Test for a Unit Root in the Presence of Deterministic Trends, Oxford Bulletin of Economics and Statistics, 54(3) (1992), 257–287. Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes

Statistical Tests

Unit Root Tests, Other

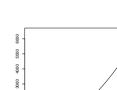
Schmidt & Phillips, IV

${\rm R}\ {\sf code}$

> set.seed(12345) > y1 <- cumsum(rnorm(250)) > TD <- 5.0 + 0.7 * seq(250) + 0.1 * seq(250)^2 > y1.d <- y1 + TD > plot.ts(y1.d, xlab = "", ylab = "") > y1.d.sp <- ur.sp(y1.d, type = "tau", + pol.deg = 2, signif = 0.05)

${\rm R}\xspace$ Output

	Statistic	1pct	5pct	10pct
$Z(\tau)$	-2.53	-4.08	-3.55	-3.28
$Z(\rho)$	-12.70	-32.40	-24.80	-21.00



R Output

000 2000

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

nivariate Time eries Definitions Representation / Models Ion-stationary Processes

Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs R packages

Table:	S	&	Ρ	tests
--------	---	---	---	-------

Figure: I(1)-process with polynomial trend

150 200 250

Zivot & Andrews, I

- Problem: Difficult to statistically distinguish between an I(1)-series from a stable I(0) that is contaminated by a structural shift.
- If break point is known: Perron and Perron & Vogelsang tests.
- But risk of data mining if break point is exogenously determined.
- Solution: Endogenously determine potential break point: Zivot & Andrews test.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs R packages

Zivot & Andrews, II

Test Statistic

$$t_{\hat{\alpha}^i}[\hat{\lambda}^i_{\inf}] = \inf_{\lambda \in \Delta} t_{\hat{\alpha}^i}(\lambda) \quad \text{for} \quad i = A, B, C ,$$

A, B, C refer to models that allow for unknown breaks in the intercept and/or trend. The test statistic is the Student t ratio $t_{\hat{\alpha}^i}(\lambda)$ for i = A, B, C.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests Multivariate Time Series

Series VAR SVAR Cointegration SVEC Fopics Left Or Monographs

(29)

Zivot & Andrews, III

${\rm R}$ Resources

- Function ur.za in package urca.
- Function urzaTest in package fUnitRoots.

Literature

- Zivot, E. and D.W.K. Andrews, Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis, Journal of Business & Economic Statistics, 10(3) (1992), 251–270.
- Perron, P., The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis, *Econometrica*, 57(6) (1989), 1361–1401.
- Perron, P., Testing for a Unit Root in a Time Series With a Changing Mean, Journal of Business & Economic Statistics, 8(2) (1990), 153–162.
- Perron, P. and T.J. Vogelsang, Testing for a unit root in a time series with a changing mean: corrections and extensions, *Journal of Business & Economic Statistics*, 10 (1992), 467–470.
- Perron, P., Erratum: The Great Crash, the Oil Price Shock and the Unit Root Hypothesis, Econometrica, 61(1) (1993), 248–249.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes

Statistical Tests

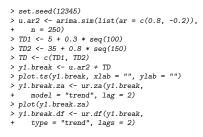
Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out

Monographs

Zivot & Andrews, IV

\mathbf{R} code

R Output



R Output

	Statistic	1pct	5pct	10pct
ZA	-7.72	-4.93	-4.42	-4.11
ADF	-1.80	-3.99	-3.43	-3.13

Table: Z & A and ADF tests

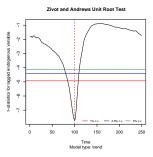


Figure: Plot of Statistic

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time beries Definitions Representation / Models Non-stationary Processes

Statistical Tests

```
Multivariate Time
Series
VAR
SVAR
Cointegration
SVEC
Topics Left Out
Monographs
```

Stationarity Tests KPSS, I

Model

$$y_t = \beta' D_t + \mu_t + u_t , \ u_t \sim I(0)$$
(30)
$$\mu_t = \mu_{t-1} + \varepsilon_t , \ \varepsilon_t \sim WN(0, \sigma^2)$$
(31)

Hypothesis

$$H_0: \ \sigma_arepsilon^2 = 0 \quad ext{and} \quad H_1: \ \sigma_arepsilon^2 > 0$$

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Statistical Tests

(32)

Test Statistic

$$LM = \frac{T^{-2} \sum_{t=1}^{T} S_t^2}{\hat{\lambda}^2}$$
(33)

Stationarity Tests KPSS, II

R Resources

- Function ur.kpss in package urca.
- Function urkpssTest in package fUnitRoots.
- Function kpss.test in package tseries.
- Function KPSS.test and KPSS.rectest in package uroot.

Literature

 Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin, Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root, *Journal of Econometrics*, 54 (1992), 159–178. Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out

monograph.

Stationarity Tests KPSS, III

${\rm R}\,\,\text{code}$

${\rm R}\xspace$ Output

	Statistic	1pct	5pct	10pct
I(0) trd.	0.05	0.12	0.15	0.22
I(0) const	0.30	0.35	0.46	0.74
I(1)	3.21	0.35	0.46	0.74

Table: KPSS tests

R Output

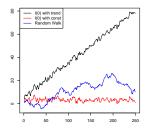


Figure: Generated Series

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Inivariate Time eries Definitions

Non-stationary Processes

Multivariate Time Series VAR Cointegration SVEC Topics Left Out Monographs

Multivariate Time Series

Overview

- Stationary VAR(p)-models
- SVAR models
- Cointegration: Concept, models and methods
- SVEC models

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR SVAR Cointegration SVEC

Topics Left Out

Vionographs

A VAR(p)-process is defined as:

$$\mathbf{y}_t = A_1 \mathbf{y}_{t-1} + \ldots + A_\rho \mathbf{y}_{t-\rho} + CD_t + \mathbf{u}_t \quad , \tag{34}$$

- A_i : coefficient matrices for i = 1, ..., p
- u_t: K-dimensional white noise process with time invariant positive definite covariance matrix E(u_tu'_t) = Σ_u.
- C: coefficient matrix of potentially deterministic regressors.
- *D_t*: column vector holding the appropriate deterministic regressors.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR SVAR Cointegration SVEC

Topics Left Out

/lonographs

VAR Companion Form

A VAR(p)-process as VAR(1):

$$\xi_t = A\xi_{t-1} + \mathbf{v}_t \text{, with}$$
(35)
$$\xi_t = \begin{bmatrix} \mathbf{y}_t \\ \vdots \\ \mathbf{y}_{t-p+1} \end{bmatrix}, A = \begin{bmatrix} A_1 & A_2 & \cdots & A_{p-1} & A_p \\ I & 0 & \cdots & 0 & 0 \\ 0 & I & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & I & 0 \end{bmatrix}, \mathbf{v}_t = \begin{bmatrix} \mathbf{u}_t \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

If the moduli of the *eigenvalues* of A are less than one, then the VAR(p)-process is stable.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes

Multivariate Time Series

VAR SVAR Cointegration SVEC Topics Left

Monographs R packages

VAR Wold Decomposition

$$\mathbf{y}_t = \Phi_0 \mathbf{u}_t + \Phi_1 \mathbf{u}_{t-1} + \Phi_2 \mathbf{u}_{t-2} + \dots \quad , \tag{36}$$

with $\Phi_0 = {\it I}_{\it K}$ and the Φ_s matrices can be computed recursively according to:

$$\Phi_s = \sum_{j=1}^{s} \Phi_{s-j} A_j$$
 for $s = 1, 2, ...$, (37)

whereby $\Phi_0 = I_K$ and $A_j = 0$ for j > p.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR SVAR Cointegration SVEC Topics Left Of Monographs

VAR Empirical Lag Order Selection

$$AIC(p) = \log \det(\tilde{\Sigma}_u(p)) + \frac{2}{T} p K^2 \quad , \tag{38a}$$

$$\operatorname{HQ}(p) = \log \operatorname{det}(\tilde{\Sigma}_u(p)) + rac{2 \log(\log(T))}{T} p K^2$$
, (38b)

$$SC(p) = \log \det(\tilde{\Sigma}_u(p)) + \frac{\log(T)}{T} p K^2$$
 or, (38c)

$$\mathsf{FPE}(p) = \left(\frac{T+p^*}{T-p^*}\right)^K \det(\tilde{\Sigma}_u(p)) \quad , \tag{38d}$$

with $\tilde{\Sigma}_{u}(p) = T^{-1} \sum_{t=1}^{T} \hat{\mathbf{u}}_{t} \hat{\mathbf{u}}'_{t}$ and p^{*} is the total number of the parameters in each equation and p assigns the lag order.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs R packages

VAR Simulation/Estimation, I

Example of simulated VAR(2):

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_t = \begin{bmatrix} 0.5 & 0.2 \\ -0.2 & -0.5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_{t-1} + \begin{bmatrix} -0.3 & -0.7 \\ -0.1 & 0.3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_{t-2} + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}_t$$

- Simulation of VAR-processes with packages dse1 and mAr
- Estimation of VAR-processes with packages dse1, mAr and vars

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR SVAR Cointegration SVEC

Topics Left Out

/lonographs

VAR Simulation/Estimation, II

\mathbf{R} code

R Output

```
> library(dse1)
> library(vars)
> Apolv <- arrav(c(1.0, -0.5, 0.3, 0,
     0.2, 0.1, 0, -0.2, 0.7, 1, 0.5, -0.3),
    c(3, 2, 2))
> B <- diag(2)
> var2 < -ARMA(A = Apolv, B = B)
> varsim <- simulate(var2, sampleT = 500,
     noise = list(w = matrix(rnorm(1000).
+ nrow = 500, ncol = 2)).
     rng = list(seed = c(123456)))
> vardat <- matrix(varsim$output,
     nrow = 500, ncol = 2)
> colnames(vardat) <- c("v1", "v2")</pre>
> infocrit <- VARselect(vardat, lag.max = 3,
      type = "const")
> varsimest <- VAR(vardat, p = 2,
      type = "none")
> roots <- roots(varsimest)</pre>
```

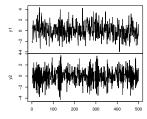


Figure: Generated VAR(2)

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR SVAR Cointegration SVEC

Topics Left Out

Monographs

VAR Simulation/Estimation, II

	Estimate	Std. Error	t value	Pr(> t)
y1.l1	0.4954	0.0366	13.55	0.0000
y2.l1	0.1466	0.0404	3.63	0.0003
y1.l2	-0.2788	0.0364	-7.66	0.0000
y2.l2	-0.7570	0.0455	-16.64	0.0000

Table: VAR result for y_1

	Estimate	Std. Error	t value	$\Pr(> t)$
y1.l1	-0.2076	0.0375	-5.54	0.0000
y2.l1	-0.4899	0.0414	-11.83	0.0000
y1.l2	-0.1144	0.0373	-3.07	0.0023
y2.l2	0.3375	0.0467	7.23	0.0000

Table: VAR result for y_2

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR Cointegration SVEC

Topics Left Out

Vionographs

VAR Simulation/Estimation, III

	1	2	3
AIC(n)	0.61	0.02	0.02
HQ(n)	0.63	0.05	0.07
SC(n)	0.66	0.10	0.14
FPE(n)	1.84	1.02	1.02

Table: Empirical Lag Selection

	1	2	3	4
Eigen values	0.84	0.66	0.57	0.57

Table: Stability

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR Cointegration SVEC

Topics Left Out

Monographs

VAR Diagnostic Testing, I

Statistical Tests

- Serial correlation: Portmanteau Test, Breusch & Godfrey
- Heteroskedasticity: ARCH
- Normality: Jarque & Bera, Skewness, Kurtosis
- Structural Stability: EFP, CUSUM, CUSUM-of-Squares, Fluctuation Test *etc.*

\mathbf{R} Resources

- Functions serial.test, arch.test, normality.test and stability in package vars.
- Function checkResiduals in package **dse1**.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

Cointegration SVEC

Topics Left Out

Monographs

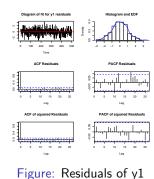
Diagnostic Testing, II

${\rm R}\,\,\text{code}$

> var2c.serial <- serial.test(varsimest) > var2c.arch <- arch.test(varsimest) > var2c.norm <- normality.test(varsimest)</pre>

> plot(var2c.serial)

R Output



R Output

	Statistic	p-value
PT	52.673	0.602
ARCH	45.005	0.472
JB	1.369	0.850
Kurtosis	0.029	0.986
Skewness	1.340	0.512

Table: Diagnostic tests of VAR(2)

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR Cointegratio

Topics Left Out

Monographs

Diagnostic Testing, III

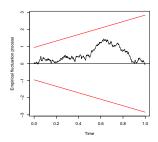
${\rm R}\,\,\text{code}$

${\rm R}\xspace$ Output

> reccusum <- stability(varsimest,

- + type = "Rec-CUSUM")
- > fluctuation <- stability(varsimest,
- + type = "fluctuation")

${\rm R}\xspace$ Output



Eulorement of the second constraints of the

Figure: Fluctuation Test y2

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes

Multivariate Time Series

VAR SVAR Cointegration SVEC

Topics Left Out

Monographs

R packages

Figure: CUSUM Test y1

VAR Causality, I

Granger-causality

$$\begin{bmatrix} \mathbf{y}_{1t} \\ \mathbf{y}_{2t} \end{bmatrix} = \sum_{i=1}^{p} \begin{bmatrix} \alpha_{11,i} & \alpha_{12,i} \\ \alpha_{21,i} & \alpha_{22,i} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{1,t-i} \\ \mathbf{y}_{2,t-i} \end{bmatrix} + CD_t + \begin{bmatrix} \mathbf{u}_{1t} \\ \mathbf{u}_{2t} \end{bmatrix} , \qquad (39)$$

- Null hypothesis: sub-vector y_{1t} does not Granger-cause y_{2t}, is defined as α_{21,i} = 0 for i = 1, 2, ..., p
- Alternative hypothesis is: $\exists \alpha_{21,i} \neq 0$ for i = 1, 2, ..., p.
- Statistic: F(pK₁K₂, KT n^{*}), with n^{*} equal to the total number of parameters in the above VAR(p)-process, including deterministic regressors.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes

Multivariate Time Series

VAR SVAR Cointegration SVEC

Topics Left Out

/lonographs

VAR Causality, II

Instantaneous-causality

The null hypothesis for non-instantaneous causality is defined as: $H_0: C\sigma = 0$, where C is a $(N \times K(K + 1)/2)$ matrix of rank N selecting the relevant co-variances of \mathbf{u}_{1t} and \mathbf{u}_{2t} ; $\tilde{\sigma} = vech(\tilde{\Sigma}_u)$. The Wald statistic is defined as:

$$\lambda_W = T \tilde{\sigma}' C' [2CD_K^+ (\tilde{\Sigma}_u \otimes \tilde{\Sigma}_u) D_K^{+'} C']^{-1} C \tilde{\sigma} , \qquad (40)$$

hereby assigning the Moore-Penrose inverse of the duplication matrix D_K with D_K^+ and $\tilde{\Sigma}_u = \frac{1}{T} \Sigma_{t=1}^T \hat{\mathbf{u}}_t \hat{\mathbf{u}}'_t$. The test statistic λ_W is asymptotically distributed as $\chi^2(N)$.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR SVAR Cointegration SVEC

Aonographs R packages

VAR Causality, III

${\rm R}\,$ Resources

• Function causality in package vars.

${\rm R}\,$ Code

> var.causal <- causality(varsimest, cause = "y2")

R Output

	Statistic	p-value
Granger	254.53	0.00
Instant	0.00	0.96

Table: Causality tests

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR Cointegration SVEC

Topics Left Out

Monographs

Prediction. I

Recursive predictions according to:

$$\mathbf{y}_{T+1|T} = A_1 \mathbf{y}_T + \ldots + A_p \mathbf{y}_{T+1-p} + CD_{T+1} \qquad (41)$$

Forecast error covariance matrix:

$$Cov\left(\begin{bmatrix} \mathbf{y}_{T+1} - \mathbf{y}_{T+1|T} \\ \vdots \\ \mathbf{y}_{T+h} - \mathbf{y}_{T+h|T} \end{bmatrix}\right) = \begin{bmatrix} I & 0 & \cdots & 0 \\ \Phi_{1} & I & & 0 \\ \vdots & & \ddots & 0 \\ \Phi_{h-1} & \Phi_{h-2} & \cdots & I \end{bmatrix} (\Sigma_{\mathbf{u}} \otimes I_{h}) \begin{bmatrix} \mathsf{Multiv}_{\mathsf{war}} \\ \mathsf{war}_{\mathsf{convergence}} \\ \mathsf{var}_{\mathsf{convergence}} \\ \mathsf{var}_{\mathsf{var}} \\ \mathsf$$

and the matrices Φ_i are the coefficient matrices of the Wold moving average representation of a stable VAR(p)-process.

Tutorial: Analysis of Integrated and Cointegrated Time Series

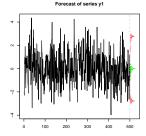
Pfaff

VAR Prediction, II R Resources

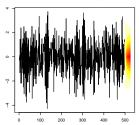
• Method predict in package vars for objects of class varest.

${\rm R}\ {\sf Code}$

- > predictions <- predict(varsimest, n.ahead = 25)
- > plot(predictions)
- > fanchart(predictions)



Fanchart for variable y2



Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR Cointegration SVEC

Topics Left Out

/lonographs

Impulse Response Function, I

- Based on Wold decomposition of a stable VAR(p).
- Investigate the dynamic interactions between the endogenous variables.
- The (i, j)th coefficients of the matrices Φ_s are thereby interpreted as the expected response of variable y_{i,t+s} to a unit change in variable y_{jt}.
- Can be cumulated through time s = 1, 2, ...: cumulated impact of a unit change in variable j to the variable i at time s.
- Orthogonalized impulse responses: underlying shocks are less likely to occur in isolation (derived from Choleski Decomposition).

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

Cointegration SVEC

Fopics Left Out

Monographs

Impulse Response Function, II

- Orthogonalized impulse responses: Σ_u = PP' with P being a lower triangular.
- Transformed moving average representation:

$$\mathbf{y}_t = \Psi_0 \varepsilon_t + \Psi_1 \varepsilon_{t-1} + \dots ,$$

with $\varepsilon_t = P^{-1} \mathbf{u}_t$ and $\Psi_i = \Phi_i P$ for i = 0, 1, 2, ... and $\Psi_0 = P$.

• Confidence bands by bootstrapping.

R Resources

• Methods irf, Phi and Psi in package vars.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

nivariate Time eries

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

(42)

```
VAR
SVAR
Cointegration
SVEC
Topics Left O
```

Impulse Response Function, III R Code

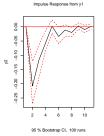
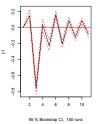


Figure: IRF of y1



Impulse Response from v2

Figure: IRF of y2

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

Cointegration SVEC

Topics Left Out

Vionographs

Forecast Error Variance Decomposition, I

- FEVD: based on orthogonalized impulse response coefficient matrices Ψ_n
- Analyze the contribution of variable *j* to the *h*-step forecast error variance of variable *k*.
- Element-wise squared orthogonalized impulse responses are divided by the variance of the forecast error variance, σ²_k(h):

$$\omega_{kj}(h) = (\psi_{kj,0}^2 + \ldots + \psi_{kj,h-1}^2) / \sigma_k^2(h) .$$
 (43)

\mathbf{R} Resources

• Method fevd in package vars.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR Cointegration SVEC

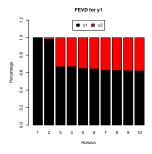
Topics Left Out

Rinackages

Forecast Error Variance Decomposition, II

${\rm R}\,$ Code

> fevd.var2 <- fevd(varsimest, n.ahead = 10)
> plot(fevd.var2)



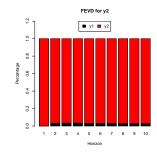


Figure: FEVD of y1

Figure: IRF of y2

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR SVAR Cointegration SVEC

Aonographs

- VAR can be viewed as a reduced form model.
- SVAR is its structural form and is defined as:

$$A\mathbf{y}_t = A_1^*\mathbf{y}_{t-1} + \ldots + A_p^*\mathbf{y}_{t-p} + B\varepsilon_t$$

- Structural errors: ε_t are white noise.
- Coefficient matrices: A^{*}_i for i = 1,..., p, are structural coefficients that might differ from their reduced form counterparts.
- Use of SVAR: identify shocks and trace these out by IRF and/or FEVD through imposing restrictions on the matrices A and/or B.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

(44)

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs R packages

SVAR Models, II

- Reduced form residuals can be retrieved from a SVAR-model by $\mathbf{u}_t = A^{-1}B\varepsilon_t$ and its variance-covariance matrix by $\Sigma_{\mathbf{u}} = A^{-1}BB'A^{-1'}$.
- A model: *B* is set to I_K (minimum number of restrictions for identification is K(K-1)/2).
- B model: A is set to I_{K} (minimum number of restrictions for identification is K(K-1)/2).
- AB model: restrictions can be placed on both matrices (minimum number of restrictions for identification is $K^2 + K(K-1)/2$).

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

SVAR

Cointegration SVEC

Topics Left Out

SVAR

Estimation

• Directly, by minimizing the negative of the Log-Likelihood:

$$\ln L_{c}(A,B) = -\frac{KT}{2}\ln(2\pi) + \frac{T}{2}\ln|A|^{2} - \frac{T}{2}\ln|B|^{2} - \frac{T}{2}tr(A'B'^{-1}B^{-1}A\tilde{\Sigma}_{u}), \qquad (45)$$

- Scoring algorithm proposed by Amisano and Giannini (1997).
- Over-identification test:

$$LR = T(\log \det(\tilde{\Sigma}_{\mathbf{u}}^{r}) - \log \det(\tilde{\Sigma}_{\mathbf{u}}))$$
(46)

with $\tilde{\Sigma}_{\mathbf{u}}$: reduced form variance-covariance matrix and $\tilde{\Sigma}_{\mathbf{u}}^{r}$: restricted structural form estimation.

${\rm R}$ Resources

• Functions BQ and SVAR in package vars.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

opics Left Out Ionographs

SVAR

A-Model, I

The Model

$$\begin{bmatrix} 1.0 & 0.7\\ -0.4 & 1.0 \end{bmatrix} \begin{bmatrix} y_1\\ y_2 \end{bmatrix}_t = \begin{bmatrix} 0.5 & 0.2\\ -0.2 & -0.5 \end{bmatrix} \begin{bmatrix} y_1\\ y_2 \end{bmatrix}_{t-1} + \\ \begin{bmatrix} -0.3 & -0.7\\ -0.1 & 0.3 \end{bmatrix} \begin{bmatrix} y_1\\ y_2 \end{bmatrix}_{t-2} + \begin{bmatrix} \varepsilon_1\\ \varepsilon_2 \end{bmatrix}_t$$

Restrictions

Restrictions for A matrix in explicit form:

$$\operatorname{vec}(A) = R_{a}\gamma_{a} + r_{a}$$

$$\begin{bmatrix} 1\\ \alpha_{21}\\ \alpha_{12}\\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 1 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \gamma_{1}\\ \gamma_{2} \end{bmatrix} + \begin{bmatrix} 1\\ 0\\ 0\\ 1 \end{bmatrix}$$

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Vionographs

SVAR A-Model, II

${\rm R}\xspace$ Code

${\rm R}\xspace$ Output

_

> Apoly <- array(
+ c(1.0, -0.5, 0.3, -0.4,
+ 0.2, 0.1, 0.7, -0.2,
+ 0.7, 1, 0.5, -0.3) ,
+ c(3, 2, 2))
> B <- diag(2)
<pre>> svarA <- ARMA(A = Apoly, B = B)</pre>
> svarsim <- simulate(svarA,
<pre>+ sampleT = 500, rng = list(seed = c(123)))</pre>
> svardat <- matrix(svarsim\$output,
+ nrow = 500, ncol = 2)
> colnames(svardat) <- c("y1", "y2")
> A <- diag(2)
> A[2, 1] <- NA
> A[1, 2] <- NA
<pre>> varest <- VAR(svardat, p = 2, type = "none")</pre>
<pre>> svara <- SVAR(varest, estmethod = "scoring",</pre>
+ $Amat = A$)

	y1	у2
y1	1.00	0.76
y2	-0.39	1.00

Table: A matrix

	y1	y2
y1	0.00	0.06
y2	0.05	0.00

Table: S.E. of A

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series Definitions Representation / Models

Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Vonographs

SVAR

B-Model, I

The Model

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_t = \begin{bmatrix} 0.5 & 0.2 \\ -0.2 & -0.5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_{t-1} + \\ \begin{bmatrix} -0.3 & -0.7 \\ -0.1 & 0.3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_{t-2} + \begin{bmatrix} 1.0 & 0.0 \\ -0.8 & 1.0 \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}_t$$

Restrictions

Restrictions for B matrix in explicit form:

$$\operatorname{vec}(B) = R_b \gamma_b + r_b$$

$$\begin{bmatrix} 1\\ \beta_{21}\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix} [\gamma_1] + \begin{bmatrix} 1\\ 0\\ 0\\ 1 \end{bmatrix}$$

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Monographs

SVAR B-Model, II

${\rm R}\xspace$ Code

${\rm R}\xspace$ Output

> Apoly <- array(
+ c(1.0, -0.5, 0.3, 0,
+ 0.2, 0.1, 0.0, -0.2,
+ 0.7, 1.0, 0.5, -0.3),
+ c(3, 2, 2))
> B <- diag(2)
> B[2, 1] <0.8
> svarB <- ARMA(A = Apoly, B = B)
> svarsim <- simulate(svarB, sampleT = 500,
<pre>+ rng = list(seed = c(123456)))</pre>
> svardat <- matrix(svarsim\$output,
+ nrow = 500, ncol = 2)
> colnames(svardat) <- c("y1", "y2")
> B <- diag(2)
> B[2, 1] <- NA
<pre>> varest <- VAR(svardat, p = 2, type = "none")</pre>
> svarb <- SVAR(varest, Bmat = B)

	y1	y2
y1	1.00	0.00
y2	-0.84	1.00

Table: B matrix

	y1	y2
y1	0.00	0.00
y2	0.04	0.00

Table: S.E. of B

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series Definitions

Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Vonographs

Impulse Response Analysis, I

• Impulse response coefficients for SVAR:

$$\Theta_i = \Phi_i A^{-1} B$$
 for $i = 1, \ldots, n$.

 Orthogonalization not meaningful, hence not implemented

 ${\rm R}\xspace$ Resources

• Method irf in package vars.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models

Non-stationary Processes Statistical Tests

Multivariate Time Series

SVAR

(47)

Cointegration SVEC

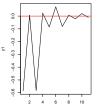
Topics Left Out

Monographs

Impulse Response Analysis, II R $\operatorname{\mathsf{Code}}$

SVAR Impulse Response from y1

 SVAR Impulse Response from y2



Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Vionographs

R packages

Figure: IRF of y1

Figure: IRF of y2

Forecast Error Variance Decomposition, I

 Forecast errors of y_{T+h|T} are derived from the impulse responses of SVAR and the derivation to the forecast error variance decomposition is similar to the one outlined for VARs.

 \mathbf{R} Resources

• Method fevd in package vars.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

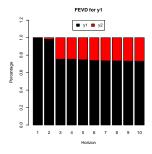
Topics Left Out

Monographs

Forecast Error Variance Decomposition, II

${\rm R}\,$ Code

> fevd.svarb <- fevd(svarb, n.ahead = 10)
> plot(fevd.svarb)



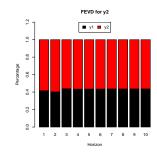


Figure: FEVD of y1

Figure: IRF of y2

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Fopics Left Out

Nonographs

Cointegration Spurious Regression, I

Problem

- I(1) variables that are not cointegrated are regressed on each other.
- Slope coefficients do not converge in probability to zero.
- t-statistics diverge to $\pm \infty$ as $T \to \infty$.
- R^2 tends to unity with $T \to \infty$.
- Rule-of-thumb: Be cautious when R^2 is greater than DW statistic.

Literature

 Phillips, P.C.B., Understanding Spurious Regression in Econometrics, Journal of Econometrics, 33 (1986), 311–340. Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Spurious Regression, II

$\mathbf R$ Code

> library(lmtest) > set.seed(54321) > e1 <- rnorm(500) > e2 <- rnorm(500) > y1 <- cumsun(e1) y2 <- cumsun(e2) > sr.reg1 <- lm(y1 ~ y2) > sr.reg1 <- lm(y1 ~ y2) > sr.reg2 <- lm(diff(y1) ~ diff(y2))</pre>

${\rm R}\xspace$ Output

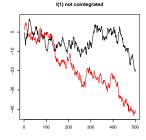


Figure: Spurious relation

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Cointegration Spurious Regression, III

${\rm R}\xspace$ Output

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1.9532	0.3696	-5.28	0.0000
y2	0.1427	0.0165	8.63	0.0000

Table: Level regression

For the level regression the R^2 is 0.13 and the DW statistic is 0.051.

-	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.0434	0.0456	-0.95	0.3413
diff(y2)	-0.0588	0.0453	-1.30	0.1942

Table: Difference regression

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models

Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Vonographs

Definition, I

Definition

The components of the vector \mathbf{y}_t are said to be cointegrated of order d, b, denoted $\mathbf{y}_t \sim Cl(d, b)$, if (a) all components of \mathbf{y}_t are l(d); and (b) a vector $\beta \neq 0$) exists so that $z_t = \beta' \mathbf{y}_t \sim l(d-b), b > 0$. The vector β is called the cointegrating vector.

Common Trends

If the $(n \times 1)$ vector \mathbf{y}_t is cointegrated with 0 < r < n cointegrating vectors, then there are n - r common I(1) stochastic trends.

Literature

 Engle, R.F. and C.W.J. Granger, Co-Integration and Error Correction: Representation, Estimation and Testing, *Econometrica*, 55 (1987), 251–276. Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR

Cointegration SVEC

Topics Left Out

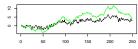
/lonographs

Definition, II

$\mathbf R$ Code

> set.seed(12345) > e1 <- rnorm(250, mean = 0, sd = 0.5) > e2 <- rnorm(250, mean = 0, sd = 0.5) > u.ar3 <- arima.sim(model = list(ar = c(0.6, -0.2, 0.1)), n = 250,innov = e1) > y2 <- cumsum(e2) > v1 <- u.ar3 + 0.5*v2 > vmax <- max(c(v1, v2)) > ymin <- min(c(y1, y2)) > lavout(matrix(1:2, nrow = 2, ncol = 1)) > plot(y1, xlab = "", ylab = "", ylim = c(ymin, ymax), main = "Cointegrated System") > lines(y2, col = "green") > plot(u.ar3, ylab = "", xlab = "", main = "Cointegrating Residuals") > abline(h = 0, col = "red")

R Output



Cointegrated System

Cointegrating Residuals

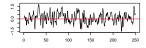


Figure: Bivariate Cointegration

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Error Correction Model

Definition

Bivariate I(1) vector $\mathbf{y}_t = (y_{1t}, y_{2t})'$ with cointegrating vector $\beta = (1, -\beta_2)'$, hence $\beta' \mathbf{y}_t = y_{1t} - \beta_2 y_{2t} \sim I(0)$, then an ECM exists in the form of:

$$\Delta y_{1,t} = \alpha_1 + \gamma_1 (y_{1,t-1} - \beta_2 y_{2,t-1}) + \sum_{i=1}^{K} \psi_{1,i} \Delta y_{1,t-i} + \sum_{i=1}^{L} \psi_{2,i} \Delta y_{2,t-i} + \varepsilon_{1,t} ,$$

$$\Delta y_{2,t} = \alpha_2 + \gamma_2 (y_{1,t-1} - \beta_2 y_{2,t-1})_{t-1} + \sum_{i=1}^{K} \xi_{1,i} \Delta y_{1,t-i}$$

 $+\sum_{i=1}^{-}\xi_{2,i}\Delta y_{2,t-i}+\varepsilon_{2,t}.$

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Inivariate Time eries

Representation / Models Non-stationary Processes Statistical Tests

Engle & Granger Two-Step Procedure, I

- Estimate long-run relationship, *i.e.*, regression in levels and test residuals for *I*(0).
- ② Take residuals from first step and use it in ECM regression.
 - Wahrschau: If ADF-test is used, you need CV provided in Engle & Yoo.
- OLS-estimator is super consistent, convergence T.
- However, OLS can be biased in small samples!

Literature

 Engle, R. and B. Yoo, Forecasting and Testing in Co-Integrated Systems, Journal of Econometrics, 35 (1987), 143–159. Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time leries Definitions

Non-stationary Processes Statistical Tests

Engle & Granger Two-Step Procedure, II R Code

> library(dynlm) > lr <- lm(y1 ~ y2) > ect <- resid(lr)[1:249] > dy1 <- diff(y1) > dy2 <- diff(y2) > ecmdat <- cbind(dy1, dy2, ect) > ecm <- dynlm(dy1 ~ L(ect, 1) + L(dy1, 1) + + L(dy2, 1), data = ecmdat)

R Output

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0064	0.0376	0.17	0.8646
L(ect, 1)	-0.6216	0.0725	-8.58	0.0000
L(dy1, 1)	-0.4235	0.0703	-6.03	0.0000
L(dy2, 1)	0.3171	0.0911	3.48	0.0006

Table: Results for ECM

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Inivariate Time eries

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAF

Cointegration SVEC

Topics Left Out

/lonographs

Cointegration Phillips & Ouliaris, I

- Residual-based tests: Variance Ratio Test & Trace Statistic.
- Based on regression:

$$\mathbf{z}_t = \mathsf{\Pi} \mathbf{z}_{t-1} + \xi_t , \qquad (48)$$

where \mathbf{z}_t is partitioned as $\mathbf{z}_t = (y_t, \mathbf{x}'_t)$ with a dimension of \mathbf{x}_t equal to (m = n + 1).

• Null hypothesis: Not cointegrated.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out

Monographs

Cointegration Phillips & Ouliaris, II

\mathbf{R} Resources

- Function ca.po in package urca.
- Function po.test in package tseries.

Literature

 Phillips, P.C.B. and S. Ouliaris, S., Asymptotic Properties of Residual Based Tests for Cointegration, *Econometrica*, 58 (1) (1990), 165–193. Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

Cointegration SVEC

Topics Left Out

Nonographs

Cointegration Phillips & Ouliaris, III

${\rm R}\,$ Code

> z <- cbind(y1, y2)
> po.Pu <- ca.po(z, demean = "none", type = "Pu")
> po.Pz <- ca.po(z, demean = "none", type = "Pz")</pre>

${\rm R}$ Output

	Statistic	10pct	5pct	1pct
Pu	167.44	20.39	25.97	38.34
Pz	176.09	33.93	40.82	55.19

Table: Test Statistics

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAF

Cointegration SVEC

Topics Left Out

Vionographs

VECM Definition

• VAR:

$$\mathbf{y}_t = A_1 \mathbf{y}_{t-1} + \ldots + A_p \mathbf{y}_{t-p} + CD_t + \mathbf{u}_t \quad ,$$

• Transitory form of VECM:

$$\begin{split} \Delta \mathbf{y}_t &= \mathsf{\Gamma}_1 \Delta \mathbf{y}_{t-1} + \ldots + \mathsf{\Gamma}_{K-1} \Delta \mathbf{y}_{t-p+1} + \mathsf{\Pi} \mathbf{y}_{t-1} + CD_t + \varepsilon_t \\ \mathsf{\Gamma}_i &= -(A_{i+1} + \ldots + A_p) \text{, for } i = 1, \ldots, p-1 \text{,} \\ \mathsf{\Pi} &= -(I - A_1 - \cdots - A_p) \text{.} \end{split}$$

• Long-run form of VECM:

$$\begin{split} \Delta \mathbf{y}_t &= \Gamma_1 \Delta \mathbf{y}_{t-1} + \ldots + \Gamma_{p-1} \Delta \mathbf{y}_{t-p+1} + \Pi \mathbf{y}_{t-p} + CD_t + \varepsilon_t ,\\ \Gamma_i &= -(I - A_1 - \ldots - A_i) , \text{ for } i = 1, \ldots, p-1 ,\\ \Pi &= -(I - A_1 - \cdots - A_p) \end{split}$$

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models

Non-stationary Processes Statistical Tests

```
Multivariate Time
Series
VAR
SVAR
Cointegration
SVEC
Topics Left Out
Monographs
R packages
```

,

- *rk*(Π) = *n*, all *n* combinations must be stationary for balancing: y_t must be stationary around deterministic components; standard VAR-model in levels.
- Private in the second seco
- O < rk(Π) = 0 < r < n, interesting case: Π = αβ' with dimensions (n × r) and β'y_{t-1} is stationary. Each column of β represents one long-run relationship.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

SV/AR

Cointegration SVEC

Topics Left Out

/lonographs

VECM Example

$\mathbf R$ Code

> set.seed(12345) > e1 <- rnorm(250, 0, 0.5) > e2 <- rnorm(250, 0, 0.5) > e3 <- rnorm(250, 0, 0.5) > u1.ar1 <- arima.sim(model = list(ar=0.75). innov = e1, n = 250)> u2.ar1 <- arima.sim(model = list(ar=0.3), innov = e2, n = 250)> v3 <- cumsum(e3) > v1 <- 0.8 * v3 + u1.ar1 > y2 <- -0.3 * y3 + u2.ar1 > ymax <- max(c(y1, y2, y3)) > ymin <- min(c(y1, y2, y3)) > plot(y1, ylab = "", xlab = "", ylim = c(ymin, ymax)) > lines(v2, col = "red") > lines(y3, col = "blue")

${\rm R}\xspace$ Output

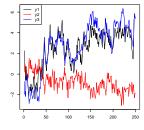


Figure: Simulated VECM

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

- Based on canonical correlations between \mathbf{y}_t and $\Delta \mathbf{y}_t$ with lagged differences.
- Correlations:

$$S_{00} = \frac{1}{T} \sum_{t=1}^{T} \hat{\mathbf{u}}_t \hat{\mathbf{u}}_t' \ , \ S_{01} = S_{10} = \sum_{t=1}^{T} \hat{\mathbf{u}}_t \hat{\mathbf{v}}_t' \ , \ S_{11} = \frac{1}{T} \sum_{t=1}^{T} \hat{\mathbf{v}}_t \hat{\mathbf{v}}_t'$$

• Eigenvalues:

 $|\lambda S_{11} - S_{10} S_{00}^{-1} S_{01}| = 0$

- LR-tests: Eigen- and Trace-test.
- Nested Hypothesis: $H(0) \subset \cdots \subset H(r) \subset \cdots \subset H(n)$.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

VECM Resources

${\rm R}$ Resources

- Functions ca.jo, cajorls, cajools, cajolst in package urca.
- Hypothesis Testing: alrtest, ablrtest, blrtest, bh5lrtest, bh6lrtest and lttest in package urca.
- Function vec2var in package vars.

Literature

- Johansen, S., Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and Control, 12 (1988), 231–254.
- Johansen, S. and K. Juselius, Maximum Likelihood Estimation and Inference on Cointegration with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics, 52(2) (1990), 169–210.
- Johansen, S., Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models, *Econometrica*, 59(6) (1991), 1551–1580.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC

Topics Left Out

Monographs

VECM

$\begin{array}{c} \text{Estimation, I} \\ R \text{ Code} \end{array}$

```
> y.mat <- data.frame(y1, y2, y3)
> vecm1 <- ca.jo(y.mat, type = "eigen", spec = "transitory")
> vecm2 <- ca.jo(y.mat, type = "trace", spec = "transitory")
> vecm.r2 <- cajorls(vecm1, r = 2)</pre>
```

${\rm R}\xspace$ Output

	Statistic	10pct	5pct	1pct
r <= 2	4.72	6.50	8.18	11.65
r <= 1	41.69	12.91	14.90	19.19
r = 0	78.17	18.90	21.07	25.75

Table: Maximal Eigenvalue Test

	Statistic	10pct	5pct	1pct
r <= 2	4.72	6.50	8.18	11.65
r <= 1	46.41	15.66	17.95	23.52
r = 0	124.58	28.71	31.52	37.22

Table: Trace Test

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Monographs

VECM Estimation, II

${\rm R}\xspace$ Output

	y1.d	y2.d	y3.d
ect1	-0.33	0.06	0.01
ect2	0.09	-0.71	-0.01
constant	0.17	-0.03	0.03
y1.dl1	0.10	-0.04	0.06
y2.dl1	0.05	-0.01	0.05
y3.dl1	-0.15	-0.03	-0.06

Table: VECM with r = 2

	ect1	ect2
y1.l1	1.00	0.00
y2.l1	0.00	1.00
y3.l1	-0.73	0.30

Table: Normalized CI-relations

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes

Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Monographs

VECM Prediction, IRF, FEVD, I

- Convert restricted VECM to level-VAR.
- Prediction, IRF, FEVD and diagnostic checking applies likewise to stationary VAR(p)-models as shown in previous slides.

${\rm R}$ Resources

• Function vec2var in package vars.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration

SVEC

Topics Left Out

Monographs

VECM

Prediction, IRF, FEVD, II

${\rm R}\,$ Code

>	<pre>vecm.level <- vec2var(vecm1, r = 2)</pre>
>	<pre>vecm.pred <- predict(vecm.level,</pre>
+	n.ahead = 10)
>	fanchart(vecm.pred)
>	<pre>vecm.irf <- irf(vecm.level, impulse = 'y3',</pre>
+	response = 'y1', boot = FALSE)
>	<pre>vecm.fevd <- fevd(vecm.level)</pre>
>	<pre>vecm.norm <- normality.test(vecm.level)</pre>
>	<pre>vecm.arch <- arch.test(vecm.level)</pre>
>	<pre>vecm.serial <- serial.test(vecm.level)</pre>

${\rm R}\xspace$ Output

	constant
y1	0.17
y2	-0.03
y3	0.03

Table: Implied Constant

${\rm R}\xspace$ Output

	y1.l1	y2.l1	y3.l1
y1	0.77	0.14	0.12
y2	0.03	0.28	-0.29
y3	0.07	0.04	0.92

Table: Implied A_1

	y1.l2	y2.l2	y3.l2
y1	-0.10	-0.05	0.15
y2	0.04	0.01	0.03
у3	-0.06	-0.05	0.06

Table: Implied A_2

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Monographs

VECM Prediction, IRF, FEVD, III

${\rm R}\xspace$ Output

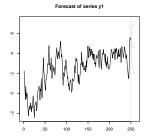


Figure: Prediction of y_1

${\rm R}\xspace$ Output

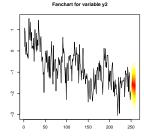


Figure: Fanchart of y₂

Tutorial: Analysis of Integrated and Cointegrated Time Series

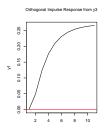
Pfaff

Univariate Time Series

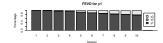
Definitions Representation / Models Non-stationary Processes Statistical Tests

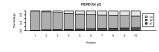
VECM Prediction, IRF, FEVD, IV

${\rm R}\xspace$ Output



R Output





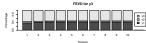


Figure: IRF of y_3 to y_1

Figure: FEVD of VECM

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR

Cointegration SVEC

Topics Left Out

Monographs

- Test if linear trend in VAR is existent.
- This corresponds to the inclusion of a constant in the error correction term.
- Statistic is distributed as χ² square with (K r) degrees of freedom.

\mathbf{R} Resources

• Function lttest in package urca.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series Definitions Representation / Modele

Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR

Cointegration SVEC

Topics Left Out

Monographs

VECM Linear Trend Test, II

${\rm R}\,$ Code

R Output

	Statistic	p-value
Denmark	1.98	0.58
Finland	4.78	0.03

Table: Linear Trend Test

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Vionographs

VECM

Restrictions on Loadings, I

- Testing exogenity, *i.e.*, certain variables do not enter into the cointegration relation(s).
- Likelihood ratio test for the hypothesis:

$$\mathcal{H}_4: \alpha = A\Psi$$
,

with
$$(r(K - m))$$
 degrees of freedom.

R Resources

• Function alrtest in package urca.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions Representation / Models Non-stationary Processes Statistical Tests

Series VAR SVAR Cointegration SVEC Topics Left Out

(49)

Monographs

VECM

Restrictions on Loadings, II

$\mathbf R$ Code

> data(UKpppuip) > attach(UKpppuip) > dat1 <- cbind(p1, p2, e12, i1, i2) > dat2 <- cbind(doilp0, doilp1) > H1 <- ca.io(dat1, K = 2, season = 4, dumvar=dat2) + > A1 <- matrix(c(1,0,0,0,0, 0.0.1.0.0. + 0.0.0.1.0. + 0,0,0,0,1), nrow=5, ncol=4) + > A2 <- matrix(c(1.0.0.0.0. 0.1.0.0.0. + 0.0.1.0.0. + 0,0,0,1,0), nrow=5, ncol=4) > H41 <- summary(alrtest(z = H1, A = A1, r = 2))+ > H42 <- summary(alrtest(z = H1, A = A2, r = 2))+

R Output

	Statistic	p-value
Exog. p2	0.66	0.72
Exog. i2	4.38	0.11

Table: Testing Exogenity

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Models Non-stationary Processes

Multivariate Time Series

VAR

SVAR

Cointegration SVEC

Topics Left Out

Monographs

VECM Restrictions on CI-Relations, I

- Tests do not depend on normalization of β .
- Tests are Likelihood ratio tests, similar for testing restrictions on α .
- Itesting restrictions for all cointegration relations.
- 2 r_1 cointegrating relations are assumed to be known and r_2 cointegrating relations have to be estimated, $r = r_1 + r_2$.
- 3 r_1 cointegrating relations are estimated with restrictions and r_2 cointegrating relations are estimated without constraints, $r = r_1 + r_2$.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

SVA

Cointegration SVEC

Topics Left Out

Monographs R packages

VECM

Restrictions on CI-Relations, II

- Following previous example: Test purchasing power parity and interest rate differential contained in all CI relations.
- Hypothesis: $\mathcal{H}_3 : \beta = H_3 \varphi$ with $H_3(K \times s)$, $\varphi(s \times r)$ and $r \leq s \leq K$: $sp(\beta) \subset sp(H_3)$.
- Functions blrtest and ablrtest in package **urca**.

Literature

- Johansen, S. and K. Juselius, Testing structural hypothesis in a multivariate cointegration analysis of the PPP and the UIP for UK, Journal of Econometrics, 53 (1992), 211–244.
- Johansen, S., Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and Control, 12 (1988), 231–254.
- Johansen, S. and K. Juselius, Maximum Likelihood Estimation and Inference on Cointegration — with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics, 52(2) (1990), 169–210.
- Johansen, S., Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models, *Econometrica*, 59(6) (1991), 1551–1580.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Jnivariate Time Series

Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series

VAR

Cointegration

Topics Left Out

Monographs R packages

VECM

Restrictions on CI-Relations. III

R. Code

R Output

> H.31 <- matrix(c(1,-1,-1,0,0,
+ 0,0,0,1,0,
+ 0,0,0,0,1), c(5,3))
> H.32 <- matrix(c(1,0,0,0,0,
+ 0,1,0,0,0,
+ 0,0,1,0,0,
+ 0,0,0,1,-1), c(5,4))
> $H31 < blrtest(z = H1, H = H.31, r = 2)$
> $H32 <-$ blrtest(z = $H1$, $H = H.32$, $r = 2$)

	Statistic	p-value
All CI: PPP	2.76	0.60
All CI: ID	13.71	0.00

Table: \mathcal{H}_3 - Tests

- PPP in all CI relations: Cannot be rejected.
- ID in all CI relations: Must be rejected.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Cointegration

VECM Restrictions on CI-Relations, IV

- Following previous example: Test purchasing power parity and interest rate differential directly, *i.e.* (1, -1, -1, 0, 0) and (0, 0, 0, 1, -1).
- In contrast to previous hypothesis \mathcal{H}_3 , which tested: $(a_i, -a_i, -a_i, *, *)$ and $(*, *, *, b_i, -b_i)$ for i = 1, ..., r.
- Hypothesis: $\mathcal{H}_5 : \beta = (\mathcal{H}_5, \Psi)$ with $\mathcal{H}_5(\mathcal{K} \times r_1)$, $\Psi(\mathcal{K} \times r_2)$, $r = r_1 + r_2$: $sp(\mathcal{H}_5) \subset sp(\beta)$.
- Function bh5lrtest in package urca.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR Cointegration SVEC Topics Left Out Monographs

VECM Restrictions on CI-Relations, V

$\mathbf R$ Code

> H.51 <- c(1, -1, -1, 0, 0) > H.52 <- c(0, 0, 0, 1, -1) > H51 <- bh51rtest(z = H1, H = H.51, r = 2) > H52 <- bh51rtest(z = H1, H = H.52, r = 2)

R Output

-	Statistic	p-value
Exact PPP	14.52	0.00
Exact ID	1.89	0.59

Table: \mathcal{H}_5 - Tests

- Reject stationarity of PPP.
- Cannot reject stationarity for ID.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration

SVEC

Topics Left Out

Monographs

VECM Restrictions on CI-Relations, VI

- Following previous example: Strict PPP not stationary; now test if general CI-relation (a, b, c, 0, 0) exist.
- In contrast to previous hypothesis \mathcal{H}_5 , which tested: (1, -1, -1, 0, 0).
- $\mathcal{H}_6: \beta = (H_6\varphi, \Psi)$ with $H_6(K \times s)$, $\varphi(s \times r_1)$, $\Psi(K \times r_2)$, $r_1 \leq s \leq K$, $r = r_1 + r_2$: dim $(sp(\beta) \cap sp(H_6)) \geq r_1$.
- Function bh6lrtest in package urca.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Jeries Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series var svar

Cointegration SVEC

opics Left Out

VECM Restrictions on CI-Relations. VII

R Code

R Output

>	H.6 <- mat	rix(rbind(diag(3),
+	c(0, 0	, 0),
+	c(0, 0	, 0)), nrow=5, ncol=3)
>	H6 <- bh61	rtest(z = H1, H = H.6,
+	r = 2,	r1 = 1)

	Statistic	p-value
General PPP	4.93	0.03

Table: \mathcal{H}_6 - Tests

Statistic insignificant at 1% level.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Cointegration

• Variables are at most I(1) and DGP is a VECM:

$$\Delta y_t = \alpha \beta' y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{p-1} \Delta y_{t-p+1} + u_t$$
 (50)
for $t = 1, \dots, T$.

- SVECM is a B-model with $u_t = B\varepsilon_t$ and $\Sigma_u = BB'$.
- For unique identification of B, $\frac{1}{2}K(K-1)$ at least restrictions are required.
- Granger's representation theorem:

$$y_t = \Xi \sum_{i=1}^t u_i + \sum_{j=0}^\infty \Xi_j^* u_{t-j} + y_0^*$$
 (51)

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

SVEC

SVEC Definition, II

- $\equiv \sum_{i=1}^{t} u_i$ are the common trends; rank of \equiv is K r.
- Matrix Ξ has the form:

$$\Xi = \beta_{\perp} \left[\alpha'_{\perp} \left(I_{\mathcal{K}} - \sum_{i=1}^{p-1} \Gamma_i \right) \beta_{\perp} \right]^{-1} \alpha'_{\perp}$$
 (52)

- Substitution yields: $\Xi \sum_{i=1}^{t} u_i = \Xi B \sum_{i=1}^{t} \varepsilon_t$.
- Hence, long-run effects of structural innovations are given by ΞB .
- At most r innovations can have transitory effects and at least K r have permanent effects.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models Non-stationary Processes Statistical Tests

Series VAR SVAR Cointegration SVEC Topics Left Out Monographs R packages

SVEC Resources

R Resources

- Function SVEC in package vars.
- Methods irf and fevd in package vars.
- Method plot for irf and fevd in package vars.

Literature

- King, R., C. Plosser, J. Stock and M. Watson, Stochastic Trends and economic fluctuations, American Economic Review 81 (1991), 819–840.
- Lütkepohl, H. and M. Krätzig, Applied Time Series Econometrics, 2004, Cambridge.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions Representation / Models

Non-stationary Processes Statistical Tests

SVEC Example Canada

${\rm R}\,$ Code

<pre>> library(vars) > data(Canada) > vec.can <- ca.jo(Canada, K = 2, + spec = "transitory", season = 4)</pre>
> $LR <- matrix(0, nrow = 4, ncol = 4)$
> LR[, c(1, 2)] <- NA
> SR <- matrix(NA, nrow = 4, ncol = 4)
> SR[3, 4] <- 0
> SR[4, 2] <- 0
> svecm <- SVEC(vec.can, $r = 2$, $LR = LR$,
+ SR = SR, max.iter = 200,
<pre>+ lrtest = TRUE, boot = FALSE)</pre>
> svecm.irf <- irf(svecm, impulse = "e",
+ response = "rw", boot = FALSE,
+ cumulative = FALSE, runs = 100)
> svecm.fevd <- fevd(svecm)

${\rm R}\xspace$ Output

	e	prod	rw	U
e	0.05	-0.22	0.06	-0.26
prod	-0.52	0.19	-0.12	-0.23
rw	-0.08	0.37	0.56	0.00
U	-0.13	0.00	0.04	0.22

Table: Impact Matrix B

	e	prod	rw	U
e	-0.41	-0.47	0.00	0.00
prod	-0.51	0.63	0.00	0.00
rw	-0.67	-0.66	0.00	0.00
U	0.09	0.05	0.00	0.00

Table: Long-run Matrix ΞB

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series var svar

Cointegration

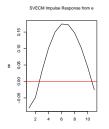
SVEC

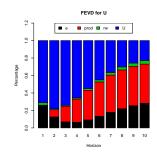
Topics Left Out

Vionographs

SVEC

${\rm R}\xspace$ Output





Analysis of Integrated and Cointegrated Time Series

Tutorial:

Pfaff

Inivariate Time eries

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Time Series VAR SVAR Cointegration SVEC Topics Left Out Monographs R packages

Figure: FEVD of U

- Near-integrated processes (see packages: longmemo, fracdiff and fArma).
- Seasonal unit roots (see package **uroot**).
- Bayesian VAR models (see package **MSBVAR**).

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series Definitions

Representation / Models Non-stationary Processes Statistical Tests

Multivariate Tim Series VAR SVAR Cointegration SVEC

Topics Left Out

Monographs

Selected Monographes

G. Amisano and C. Giannini

Topics in Structural Var Econometrics. Springer, 1997.

A. Banerjee, J.J. Dolado, J.W. Galbraith and D.F. Hendry

Co-Integration, Error-Correction, and the Econometric Analysis of Non-Stationary Data. Oxford University Press, 1993.

J. Beran

Statistics for Long-Memory Processes Chapman & Hall, 1994

J.D. Hamilton.

Time Series Analysis. Princeton University Press, 1994.

S. Johansen.

Likelihood Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press, 1995.

H. Lütkepohl.

New Introduction to Multiple Time Series Analysis. Springer, 2006.

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

Univariate Time Series

Definitions Representation / Me

Non-stationary Processes Statistical Tests

Multivariate Tim Series VAR SVAR Cointegration SVEC

Topics Left Out

Monographs

${\rm R}\xspace$ packages

Tutorial: Analysis of Integrated and Cointegrated Time Series

Pfaff

R packages

Name	Title	Version
dse1	Dynamic Systems Estimation (time series package)	2007.11-1
dynlm	Dynamic Linear Regression	0.2-0
fArma	Rmetrics - ARMA Time Series Modelling	260.72
fBasics	Rmetrics - Markets and Basic Statistics	260.72
fracdiff	Fractionally differenced ARIMA aka ARFIMA(p,d,q) models	1.3-1
fUnitRoots	Rmetrics - Trends and Unit Roots	260.72
Imtest	Testing Linear Regression Models	0.9-21
longmemo	Statistics for Long-Memory Processes (Jan Beran) – Data and Functions	0.9-5
mAr	Multivariate AutoRegressive analysis	1.1-1
MSBVAR	Markov-Switching Bayesian Vector Autoregression Models	0.3.1
tseries	Time series analysis and computational finance	0.10-15
vars	VAR Modelling	1.4-0
urca	Unit root and cointegration tests for time series data	1.1-6
uroot	Unit Root Tests and Graphics for Seasonal Time Series	1.4

Table: Overview of cited \boldsymbol{R} packages