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Definitions
Stochastic Process

Time Series
A discrete time series is defined as an ordered sequence of
random numbers with respect to time. More formally, such a
stochastic process can be written as:

{y(s, t), s ∈ S, t ∈ T} , (1)

where for each t ∈ T, y(·, t) is a random variable on the
sample space S and a realization of this stochastic process is
given by y(s, ·) for each s ∈ S with regard to a point in time
t ∈ T.
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Definitions
Stochastic Process: Examples
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Figure: U.S. unemployment rate

> library(urca)

> data(npext)

> y <- ts(na.omit(npext$realgnp), start = 1909, end = 1988, frequency = 1)

> z <- ts(exp(na.omit(npext$unemploy)), start = 1909, end = 1988, frequency = 1)

> plot(y, ylab = "logarithm of real gnp")

> plot(z, ylab = "unemployment rate in percent")
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Definitions
Stationarity

Weak Stationarity
The ameliorated form of a stationary process is termed weakly stationary and is defined as:

E [yt ] = µ <∞, ∀t ∈ T , (2a)

E [(yt − µ)(yt−j − µ)] = γj , ∀t, j ∈ T . (2b)

Because only the first two theoretical moments of the stochastic process have to be defined and being
constant, finite over time, this process is also referred to as being second-order stationary or covariance
stationary.

Strict Stationarity
The concept of a strictly stationary process is defined as:

F{y1, y2, . . . , yt , . . . , yT } = F{y1+j , y2+j , . . . , yt+j , . . . , yT+j} , (3)

where F{·} is the joint distribution function and ∀t, j ∈ T.

Note:
Hence, if a process is strictly stationary with finite second moments, then it must be covariance
stationary as well. Although a stochastic processes can be set up to be covariance stationary, it need not
be a strictly stationary process. It would be the case, for example, if the mean and auto-covariances
would not be functions of time but of higher moments instead.
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Definitions
White Noise

Definition
A white noise process is defined as:

E(εt ) = 0 , (4a)

E(ε2
t ) = σ

2
, (4b)

E(εtετ ) = 0 for t 6= τ . (4c)

When necessary, εt is assumed to be normally distributed: εt v N (0, σ2). If Equations 4a–4c are
amended by this assumption, then the process is said to be a normal- or Gaussian white noise process.
Furthermore, sometimes Equation 4c is replaced with the stronger assumption of independence. If this is
the case, then the process is said to be an independent white noise process. Please note that for
normally distributed random variables, uncorrelatedness and independence are equivalent. Otherwise,
independence is sufficient for uncorrelatedness but not vice versa.
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Definitions
White Noise: Example

R code

> set.seed(12345)

> gwn <- rnorm(100)

> layout(matrix(1:4, ncol = 2, nrow = 2))

> plot.ts(gwn, xlab = "", ylab = "")

> abline(h = 0, col = "red")

> acf(gwn, main = "ACF")

> qqnorm(gwn)

> pacf(gwn, main = "PACF")

R Output
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Definitions
Ergodicity

Definition
Ergodicity refers to one type of asymptotic independence. More formally, asymptotic independence can
be defined as

|F (y1, . . . , yT , yj+1, . . . , yj+T )− F (y1, . . . , yT )F (yj+1, . . . , yj+T )| → 0 , (5)

with j →∞. The joint distribution of two subsequences of a stochastic process {yt} is equal to the
product of the marginal distribution functions the more distant the two subsequences are from each
other. A stationary stochastic process is ergodic if

lim
T→∞

8<: 1

T

TX
j=1

E [yt − µ][yt+j − µ]

9=; = 0 , (6)

holds. This equation would be satisfied if the auto-covariances tend to zero with increasing j .

In prose:
Asymptotic independence means that two realizations of a time series become ever closer to
independence, the further they are apart with respect to time.
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Wold Decomposition

Theorem
Any covariance stationary time series {yt} can be represented in
the form:

yt = µ+
∞∑
j=0

ψjεt−j , εt ∼WN(0, σ2) (7a)

ψ0 = 1 and
∞∑
j=0

ψ2
j <∞ (7b)

Characteristics

Fixed mean: E [yt ] = µ:

Finite variance: γ0 = σ2
∑∞

j=0 ψ
2
j <∞.
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Box-Jenkins

Autoregressive moving average models (ARMA)

Approximate Wold form of a stationary time series by a
parsimonious parametric model

ARMA(p,q) model:

yt − µ = φ1(yt−1 − µ) + . . .+ φp(yt−p − µ)

+ εt + θ1εt−1 + . . .+ θqεt−q

εt ∼WN(0, σ2)

(8)

Extension for integrated time series: ARIMA(p, d, q) model
class.
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Box-Jenkins
Procedure

1 If necessary, transform data, such that covariance stationarity
is achieved.

2 Inspect, ACF and PACF for initial guesses of p and q.

3 Estimate proposed model.

4 Check residuals (diagnostic tests) and stationarity of process.

5 If item 4 fails, go to item 2 and repeat. If in doubt, choose
the more parsimonious model specification.
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Box-Jenkins
R Resources

Package dse1: ARMA

Package fArma: ArmaInterface, ArmaStatistics

Package forecast: arima

Package mAr: mAr.eig, mAr.est, mAr.pca

Package stats: ar, arima, acf, pacf, ARMAacf, ARMAtoMA

Package tseries: arma
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Box-Jenkins
Example

R code

> set.seed(12345)

> y.ex <- arima.sim(n = 500,

+ list(ar = c(0.9, -0.4)))

> layout(matrix(1:3, nrow = 3, ncol = 1))

> plot(y.ex, xlab = "",

+ main = "Time series plot")

> abline(h = 0, col = "red")

> acf(y.ex, main = "ACF of y.ex")

> pacf(y.ex, main = "PACF of y.ex")

> arma20 <- arima(y.ex, order = c(2, 0, 0),

+ include.mean = FALSE)

> result <- matrix(cbind(arma20$coef,

+ sqrt(diag(arma20$var.coef))),

+ nrow = 2)

> rownames(result) <- c("ar1", "ar2")

> colnames(result) <- c("estimate", "s.e.")

R Output

estimate s.e.
ar1 0.90 0.04
ar2 −0.39 0.04

Table: ARMA(2, 0) Estimates

R Output

Time series plot

y.
ex

0 100 200 300 400 500

−
4

0
2

4

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of y.ex

0 5 10 15 20 25

−
0.

4
0.

0
0.

4

Lag

P
ar

tia
l A

C
F

PACF of y.ex

Figure: ARMA(2, 0), simulated
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Non-stationary Processes
General Remarks

Many economic/financial time series exhibit trending
behavior.

Task: determine most appropriate form of this trend.

Stationary time series: time invariants moments

In distinction: non-stationary processes have time
dependent moments (mostly mean and/or variance).
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Non-stationary Processes
Time Series Decomposition

Trend-Cycle Decomposition

Consider,

yt = TDt + Zt

TDt = β1 + β2 · t
φ(L)Zt = θ(L)εt with εt ∼WN(0, σ2) ,with

φ(L) = 1− φ1L− . . .− φpL
p and

θ(L) = 1 + θ1L + . . .+ θqL
q

(9)

Assumptions:

φ(z) = 0 has at most one root on the complex unit
circle.

θ(z) = 0 has all roots outside the unit circle.
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Non-stationary Processes
Trend Stationary Time Series

Definition
The series yt is trend stationary if the roots of φ(z) = 0 are
outside the unit circle.

φ(L) is invertible.

Zt has the Wold representation:

Zt = φ(L)−1θ(L)εt

= ψ(L)εt
(10)

with ψ(L) = φ(L)−1θ(L) =
∑∞

j=0 ψjL
j and ψ0 = 1 and

ψ(1) 6= 0.
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Non-stationary Processes
Trend Stationary Time Series: Example

R code

> set.seed(12345)

> y.tsar2 <- 5 + 0.5 * seq(250) +

+ arima.sim(list(ar = c(0.8, -0.2)), n = 250)

> plot(y.tsar2, ylab="", xlab = "")

> abline(a=5, b=0.5, col = "red")

R Output
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Figure: Trend-stationary series
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Non-stationary Processes
Difference Stationary Time Series

Definition
The series yt is difference stationary if φ(z) = 0 has one root
on the unit circle and the others are outside the unit circle.

φ(L) can be factored as

φ(L) = (1− L)φ∗(L) whereby (11)

φ∗(z) = 0 has all p − 1 roots outside the unit circle.

∆Zt is stationary and has an ARMA(p-1, q)
representation.

If Zt is difference stationary, then Zt is integrated of
order one: Zt ∼ I (1).

Recursive substitution yields: yt = y0 +
∑t

j=1 uj .
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Non-stationary Processes
Difference Stationary Time Series: Example

R code

> set.seed(12345)

> u.ar2 <- arima.sim(

+ list(ar = c(0.8, -0.2)), n = 250)

> y1 <- cumsum(u.ar2)

> TD <- 5.0 + 0.7 * seq(250)

> y1.d <- y1 + TD

> layout(matrix(1:2, nrow = 2, ncol = 1))

> plot.ts(y1, main = "I(1) process without drift",

+ ylab="", xlab = "")

> plot.ts(y1.d, main = "I(1) process with drift",

+ ylab="", xlab = "")

> abline(a=5, b=0.7, col = "red")

R Output

I(1) process without drift

0 50 100 150 200 250

0
40

80

I(1) process with drift

0 50 100 150 200 250
0

10
0

20
0

Figure: Difference-stationary
series

Note:
If ut ∼ IWN(0, σ2), then yt is a random walk.
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Statistical Tests
Unit Root vs. Stationarity Tests

General Remarks
Consider, the following trend-cycle decomposition of a time
series yT :

yt = TDt + Zt = TDT + TSt + Ct with (12)

TDt signifies the deterministic trend, TSt is the stochastic
trend and Ct is a stationary component.

Unit root tests: H0 : TSt 6= 0 vs. H1 : TSt = 0, that is
yt ∼ I (1) vs. yt ∼ I (0).

Stationarity tests: H0 : TSt = 0 vs. H1 : TSt 6= 0, that
is yt ∼ I (0) vs. yt ∼ I (1).
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Autoregressive unit root tests
General Remarks

Tests are based on the following framework:

yt = φyt−1 + ut , ut ∼ I (0) (13)

H0 : φ = 1, H1 : |φ| < 1

Tests: ADF- and PP-test.

ADF: Serial correlation in ut is captured by
autoregressive parametric structure of test.

PP: Non-parametric correction based on estimated
long-run variance of ∆yt .
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Autoregressive unit root tests
Augmented Dickey-Fuller Test, I

Test Regression

yt = β′Dt + φyt−1 +

p∑
j=1

ψj∆yt−j + ut , (14)

∆yt = β′Dt + πyt−1 +

p∑
j=1

ψj∆yt−j + ut with π = φ− 1 (15)

Test Statistic

ADFt : tφ=1 =
φ̂− 1

SE (φ)
, (16)

ADFt : tπ=0 =
π̂

SE (π)
. (17)
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Autoregressive unit root tests
Augmented Dickey-Fuller Test, II

R Resources

Function ur.df in package urca.

Function ADF.test in package uroot.

Function adf.test in package tseries.

Function urdfTest in package fUnitRoots.

Literature
Dickey, D. and W. Fuller, Distribution of the Estimators for Autoregressive Time Series with a
Unit Root, Journal of the American Statistical Society, 74 (1979), 427–341.

Dickey, D. and W. Fuller, Likelihood Ratio Statistics for Autoregressive Time Series with a Unit
Root, Econometrica, 49, 1057–1072.

Fuller, W., Introduction to Statistical Time Series, 2nd Edition, 1996, New York: John Wiley.

MacKinnon, J., Numerical Distribution Functions for Unit Root and Cointegration Tests, Journal
of Applied Econometrics, 11 (1996), 601–618.
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Autoregressive unit root tests
Augmented Dickey-Fuller Test, III

R code

> library(urca)

> y1.adf.nc.2 <- ur.df(y1,

+ type = "none", lags = 2)

> dy1.adf.nc.2 <- ur.df(diff(y1),

+ type = "none", lags = 1)

> plot(y1.adf.nc.2)

R Output

Statistic 1pct 5pct 10pct
y1 0.85 −2.58 −1.95 −1.62

∆y1 −8.14 −2.58 −1.95 −1.62

Table: ADF-test results

R Output
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Figure: Residual plot of y1
ADF-regression

Note:
Use critical values of Dickey & Fuller, Fuller or MacKinnon.
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Autoregressive unit root tests
Phillips & Perron Test, I

Test Regression

∆yt = β′Dt + πyt−1 + ut , ut ∼ I (0) (18)

Test Statistic

Zt =

(
σ̂2

λ̂2

)1/2

· tπ=0 −
1

2

(
λ̂2 − σ̂2

λ̂2

)
·
(

T · SE (π̂)

σ̂2

)
, (19)

Zπ = T π̂ − T 2 · SE (π̂)

2σ̂2
· (λ̂2 − σ̂2) . (20)

λ̂ and σ̂ signify consistent estimates of the error variance.
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Autoregressive unit root tests
Phillips & Perron Test, II

R Resources

Function ur.pp in package urca.

Function pp.test in package tseries.

Function urppTest in package fUnitRoots.

Function PP.test in package stats.

Literature
Phillips, P.C.B., Time Series Regression with a Unit Root, Econometrica, 55, 227–301.

Phillips, P.C.B. and P. Perron, Testing for Unit Roots in Time Series Regression, Biometrika, 75,
335–346.
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Autoregressive unit root tests
Phillips & Perron Test, III

R code

> library(urca)

> y1.pp.ts <- ur.pp(y1, type = "Z-tau",

+ model = "trend", lags = "short")

> dy1.pp.ts <- ur.pp(diff(y1), type = "Z-tau",

+ model = "trend", lags = "short")

> plot(y1.pp.ts)

R Output

Statistic 1pct 5pct 10pct
y1 −2.04 −4.00 −3.43 −3.14

∆y1 −7.19 −4.00 −3.43 −3.14

Table: PP-test results

R Output
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Figure: Residual plot of y1
PP-regression

Note:
Same asymptotic distribution as ADF-Tests.
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Autoregressive unit root tests
Remarks

ADF and PP test are asymptotically equivalent.

PP has better small sample properties than ADF.

Both have low power against I (0) alternatives that are close
to being I (1) processes.

Power of the tests diminishes as deterministic terms are
added to the test regression.
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Efficient unit root tests
Elliot, Rothenberg & Stock, I

Model

yt = dt + ut , (21)

ut = aut−1 + vt (22)

Test Statistics

Point optimal test:

PT =
S(a = ā)− āS(a = 1)

ω̂2
, (23)

DF-GLS test:

∆yd
t = α0y

d
t−1 + α1∆yd

t−1 + . . .+ αp∆yd
t−p + εt (24)
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Efficient Unit Root Tests
Elliot, Rothenberg & Stock, II

R Resources

Function ur.ers in package urca.

Function urersTest in package fUnitRoots.

Literature
Elliot, G., T.J. Rothenberg and J.H. Stock, Efficient Tests for an Autoregressive Time Series
with a Unit Root, Econometrica, 64 (1996), 813–836.
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Efficient Unit Root Tests
Elliot, Rothenberg & Stock, III

R code

> library(urca)

> set.seed(12345)

> u.ar1 <- arima.sim(

+ list(ar = 0.99), n = 250)

> TD <- 5.0 + 0.7 * seq(250)

> y1.ni <- cumsum(u.ar1) + TD

> y1.ers <- ur.ers(y1.ni, type = "P-test",

+ model = "trend", lag = 1)

> y1.adf <- ur.df(y1.ni, type = "trend")

R Output

Statistic 1pct 5pct 10pct
ERS 33.80 3.96 5.62 6.89
ADF −1.40 −3.99 −3.43 −3.13

Table: ERS / ADF-tests

R Output
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Figure: Near I (1) process
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Unit Root Tests, Other
Schmidt & Phillips, I

Problem of DF-type tests: nuisance parameters, i.e., the
coefficients of the deterministic regressors, are either
not defined or have a different interpretation under the
alternative hypothesis of stationarity.

Solution: LM-type test, that has the same set of
nuisance parameters under both the null and alternative
hypothesis.

Higher polynomials than a linear trend are allowed.
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Unit Root Tests, Other
Schmidt & Phillips, II

Model

yt = α + Ztδ + xt with xt = πxt−1 + εt (25)

Test Regression

∆yt = ∆Ztγ + φS̃t−1 + vt (26)

Test Statistics

Z (ρ) =
ρ̃

ω̂2
=

T φ̃

ω̂2
(27)

Z (τ)φ=0 =
τ̃

ω̂2
(28)
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Unit Root Tests, Other
Schmidt & Phillips, III

R Resources

Function ur.sp in package urca.

Function urspTest in package fUnitRoots.

Literature
Schmidt, P. and P.C.B. Phillips, LM Test for a Unit Root in the Presence of Deterministic
Trends, Oxford Bulletin of Economics and Statistics, 54(3) (1992), 257–287.
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Unit Root Tests, Other
Schmidt & Phillips, IV

R code

> set.seed(12345)

> y1 <- cumsum(rnorm(250))

> TD <- 5.0 + 0.7 * seq(250) + 0.1 * seq(250)^2

> y1.d <- y1 + TD

> plot.ts(y1.d, xlab = "", ylab = "")

> y1.d.sp <- ur.sp(y1.d, type = "tau",

+ pol.deg = 2, signif = 0.05)

R Output

Statistic 1pct 5pct 10pct
Z(τ) −2.53 −4.08 −3.55 −3.28
Z(ρ) −12.70 −32.40 −24.80 −21.00

Table: S & P tests

R Output
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Figure: I(1)-process with
polynomial trend
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Unit Root Tests, Other
Zivot & Andrews, I

Problem: Difficult to statistically distinguish between an
I (1)–series from a stable I (0) that is contaminated by a
structural shift.

If break point is known: Perron and Perron &
Vogelsang tests.

But risk of data mining if break point is exogenously
determined.

Solution: Endogenously determine potential break
point: Zivot & Andrews test.
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Unit Root Tests, Other
Zivot & Andrews, II

Test Statistic

tα̂i [λ̂i
inf ] = inf

λ∈∆
tα̂i (λ) for i = A,B,C , (29)

A,B,C refer to models that allow for unknown breaks in the

intercept and/or trend. The test statistic is the Student t ratio

tα̂i (λ) for i = A,B,C .



Tutorial:
Analysis of

Integrated and
Cointegrated Time

Series

Pfaff

Univariate Time
Series

Definitions

Representation / Models

Non-stationary Processes

Statistical Tests

Multivariate Time
Series

VAR

SVAR

Cointegration

SVEC

Topics Left Out

Monographs

R packages

Unit Root Tests, Other
Zivot & Andrews, III

R Resources

Function ur.za in package urca.

Function urzaTest in package fUnitRoots.

Literature
Zivot, E. and D.W.K. Andrews, Further Evidence on the Great Crash, the Oil-Price Shock, and
the Unit-Root Hypothesis, Journal of Business & Economic Statistics, 10(3) (1992), 251–270.

Perron, P., The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis, Econometrica,
57(6) (1989), 1361–1401.

Perron, P., Testing for a Unit Root in a Time Series With a Changing Mean, Journal of Business
& Economic Statistics, 8(2) (1990), 153–162.

Perron, P. and T.J. Vogelsang, Testing for a unit root in a time series with a changing mean:
corrections and extensions, Journal of Business & Economic Statistics, 10 (1992), 467–470.

Perron, P., Erratum: The Great Crash, the Oil Price Shock and the Unit Root Hypothesis,
Econometrica, 61(1) (1993), 248–249.
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Unit Root Tests, Other
Zivot & Andrews, IV

R code

> set.seed(12345)

> u.ar2 <- arima.sim(list(ar = c(0.8, -0.2)),

+ n = 250)

> TD1 <- 5 + 0.3 * seq(100)

> TD2 <- 35 + 0.8 * seq(150)

> TD <- c(TD1, TD2)

> y1.break <- u.ar2 + TD

> plot.ts(y1.break, xlab = "", ylab = "")

> y1.break.za <- ur.za(y1.break,

+ model = "trend", lag = 2)

> plot(y1.break.za)

> y1.break.df <- ur.df(y1.break,

+ type = "trend", lags = 2)

R Output

Statistic 1pct 5pct 10pct
ZA −7.72 −4.93 −4.42 −4.11

ADF −1.80 −3.99 −3.43 −3.13

Table: Z & A and ADF tests

R Output

Zivot and Andrews Unit Root Test
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Figure: Plot of Statistic
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Stationarity Tests
KPSS, I

Model

yt = β′Dt + µt + ut , ut ∼ I (0) (30)

µt = µt−1 + εt , εt ∼WN(0, σ2) (31)

Hypothesis

H0 : σ2
ε = 0 and H1 : σ2

ε > 0 (32)

Test Statistic

LM =
T−2

∑T
t=1 S2

t

λ̂2
(33)
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Stationarity Tests
KPSS, II

R Resources

Function ur.kpss in package urca.

Function urkpssTest in package fUnitRoots.

Function kpss.test in package tseries.

Function KPSS.test and KPSS.rectest in package uroot.

Literature
Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin, Testing the Null Hypothesis of
Stationarity Against the Alternative of a Unit Root, Journal of Econometrics, 54 (1992),
159–178.
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Stationarity Tests
KPSS, III

R code

> set.seed(12345)

> u.ar2 <- arima.sim(list(ar = c(0.8, -0.2)),

+ n = 250)

> TD1 <- 5 + 0.3 * seq(250)

> TD2 <- rep(3, 250)

> y1.td1 <- u.ar2 + TD1

> y1.td2 <- u.ar2 + TD2

> y2.rw <- cumsum(rnorm(250))

> y1td1.kpss <- ur.kpss(y1.td1, type = "tau")

> y1td2.kpss <- ur.kpss(y1.td2, type = "mu")

> y2rw.kpss <- ur.kpss(y2.rw, type = "mu")

R Output

Statistic 1pct 5pct 10pct
I(0) trd. 0.05 0.12 0.15 0.22

I(0) const 0.30 0.35 0.46 0.74
I(1) 3.21 0.35 0.46 0.74

Table: KPSS tests

R Output
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Figure: Generated Series
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VAR
Definition

A VAR(p)-process is defined as:

yt = A1yt−1 + . . .+ Apyt−p + CDt + ut , (34)

Ai : coefficient matrices for i = 1, . . . , p

ut : K-dimensional white noise process with time invariant
positive definite covariance matrix E (utu′t) = Σu.

C : coefficient matrix of potentially deterministic regressors.

Dt : column vector holding the appropriate deterministic
regressors.
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VAR
Companion Form

A VAR(p)-process as VAR(1):

ξt = Aξt−1 + vt ,with (35)

ξt =

 yt

...
yt−p+1

 , A =


A1 A2 · · · Ap−1 Ap

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 , vt =


ut

0
...
0


If the moduli of the eigenvalues of A are less than one, then the

VAR(p)-process is stable.
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VAR
Wold Decomposition

yt = Φ0ut + Φ1ut−1 + Φ2ut−2 + . . . , (36)

with Φ0 = IK and the Φs matrices can be computed recursively
according to:

Φs =
s∑

j=1

Φs−jAj for s = 1, 2, . . . , (37)

whereby Φ0 = IK and Aj = 0 for j > p.
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VAR
Empirical Lag Order Selection

AIC(p) = log det(Σ̃u(p)) +
2

T
pK 2 , (38a)

HQ(p) = log det(Σ̃u(p)) +
2 log(log(T ))

T
pK 2 , (38b)

SC(p) = log det(Σ̃u(p)) +
log(T )

T
pK 2 or, (38c)

FPE(p) =

(
T + p∗

T − p∗

)K

det(Σ̃u(p)) , (38d)

with Σ̃u(p) = T−1
∑T

t=1 ût û′t and p∗ is the total number of the

parameters in each equation and p assigns the lag order.
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VAR
Simulation/Estimation, I

Example of simulated VAR(2):[
y1

y2

]
t

=

[
0.5 0.2
−0.2 −0.5

] [
y1

y2

]
t−1

+

[
−0.3 −0.7
−0.1 0.3

] [
y1

y2

]
t−2

+

[
u1

u2

]
t

Simulation of VAR-processes with packages dse1 and mAr

Estimation of VAR-processes with packages dse1, mAr and
vars
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Simulation/Estimation, II

R code

> library(dse1)

> library(vars)

> Apoly <- array(c(1.0, -0.5, 0.3, 0,

+ 0.2, 0.1, 0, -0.2, 0.7, 1, 0.5, -0.3) ,

+ c(3, 2, 2))

> B <- diag(2)

> var2 <- ARMA(A = Apoly, B = B)

> varsim <- simulate(var2, sampleT = 500,

+ noise = list(w = matrix(rnorm(1000),

+ nrow = 500, ncol = 2)),

+ rng = list(seed = c(123456)))

> vardat <- matrix(varsim$output,

+ nrow = 500, ncol = 2)

> colnames(vardat) <- c("y1", "y2")

> infocrit <- VARselect(vardat, lag.max = 3,

+ type = "const")

> varsimest <- VAR(vardat, p = 2,

+ type = "none")

> roots <- roots(varsimest)

R Output
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Figure: Generated VAR(2)
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Simulation/Estimation, II

Estimate Std. Error t value Pr(>|t|)
y1.l1 0.4954 0.0366 13.55 0.0000
y2.l1 0.1466 0.0404 3.63 0.0003
y1.l2 −0.2788 0.0364 −7.66 0.0000
y2.l2 −0.7570 0.0455 −16.64 0.0000

Table: VAR result for y1

Estimate Std. Error t value Pr(>|t|)
y1.l1 −0.2076 0.0375 −5.54 0.0000
y2.l1 −0.4899 0.0414 −11.83 0.0000
y1.l2 −0.1144 0.0373 −3.07 0.0023
y2.l2 0.3375 0.0467 7.23 0.0000

Table: VAR result for y2
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Simulation/Estimation, III

1 2 3
AIC(n) 0.61 0.02 0.02
HQ(n) 0.63 0.05 0.07
SC(n) 0.66 0.10 0.14

FPE(n) 1.84 1.02 1.02

Table: Empirical Lag Selection

1 2 3 4
Eigen values 0.84 0.66 0.57 0.57

Table: Stability
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Diagnostic Testing, I

Statistical Tests

Serial correlation: Portmanteau Test, Breusch & Godfrey

Heteroskedasticity: ARCH

Normality: Jarque & Bera, Skewness, Kurtosis

Structural Stability: EFP, CUSUM, CUSUM-of-Squares,
Fluctuation Test etc.

R Resources

Functions serial.test, arch.test, normality.test and
stability in package vars.

Function checkResiduals in package dse1.
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Diagnostic Testing, II

R code

> var2c.serial <- serial.test(varsimest)

> var2c.arch <- arch.test(varsimest)

> var2c.norm <- normality.test(varsimest)

> plot(var2c.serial)

R Output
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Figure: Residuals of y1

R Output

Statistic p-value
PT 52.673 0.602

ARCH 45.005 0.472
JB 1.369 0.850

Kurtosis 0.029 0.986
Skewness 1.340 0.512

Table: Diagnostic tests of VAR(2)
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Diagnostic Testing, III

R code

> reccusum <- stability(varsimest,

+ type = "Rec-CUSUM")

> fluctuation <- stability(varsimest,

+ type = "fluctuation")

R Output
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Figure: CUSUM Test y1

R Output
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Figure: Fluctuation Test y2
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Causality, I

Granger-causality[
y1t

y2t

]
=

p∑
i=1

[
α11,i α12,i

α21,i α22,i

] [
y1,t−i

y2,t−i

]
+ CDt +

[
u1t

u2t

]
, (39)

Null hypothesis: sub-vector y1t does not Granger-cause y2t ,
is defined as α21,i = 0 for i = 1, 2, . . . , p

Alternative hypothesis is: ∃α21,i 6= 0 for i = 1, 2, . . . , p.

Statistic: F (pK1K2,KT − n∗), with n∗ equal to the total
number of parameters in the above VAR(p)-process,
including deterministic regressors.
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Causality, II

Instantaneous-causality
The null hypothesis for non-instantaneous causality is defined as:
H0 : Cσ = 0, where C is a (N × K (K + 1)/2) matrix of rank N
selecting the relevant co-variances of u1t and u2t ; σ̃ = vech(Σ̃u).
The Wald statistic is defined as:

λW = T σ̃′C ′[2CD+
K (Σ̃u ⊗ Σ̃u)D+′

K C ′]−1C σ̃ , (40)

hereby assigning the Moore-Penrose inverse of the duplication

matrix DK with D+
K and Σ̃u = 1

T ΣT
t=1ût û′t . The test statistic λW

is asymptotically distributed as χ2(N).
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Causality, III

R Resources

Function causality in package vars.

R Code

> var.causal <- causality(varsimest, cause = "y2")

R Output

Statistic p-value
Granger 254.53 0.00
Instant 0.00 0.96

Table: Causality tests
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Prediction, I

Recursive predictions according to:

yT+1|T = A1yT + . . .+ ApyT+1−p + CDT+1 (41)

Forecast error covariance matrix:

Cov


yT+1 − yT+1|T

...
yT+h − yT+h|T


 =


I 0 · · · 0

Φ1 I 0
...

. . . 0
Φh−1 Φh−2 . . . I

 (Σu ⊗ Ih)


I 0 · · · 0

Φ1 I 0
...

. . . 0
Φh−1 Φh−2 . . . I


′

and the matrices Φi are the coefficient matrices of the Wold
moving average representation of a stable VAR(p)-process.
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Prediction, II

R Resources

Method predict in package vars for objects of class varest.

R Code

> predictions <- predict(varsimest, n.ahead = 25)

> plot(predictions)

> fanchart(predictions)

Forecast of series y1
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0
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4

Figure: Predictions of y1

Fanchart for variable y2
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Figure: Fanchart of y2
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Impulse Response Function, I

Based on Wold decomposition of a stable VAR(p).

Investigate the dynamic interactions between the endogenous
variables.

The (i , j)th coefficients of the matrices Φs are thereby
interpreted as the expected response of variable yi,t+s to a
unit change in variable yjt .

Can be cumulated through time s = 1, 2, . . .: cumulated
impact of a unit change in variable j to the variable i at time
s.

Orthogonalized impulse responses: underlying shocks are less
likely to occur in isolation (derived from Choleski
Decomposition).
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Impulse Response Function, II

Orthogonalized impulse responses: Σu = PP ′ with P being a
lower triangular.

Transformed moving average representation:

yt = Ψ0εt + Ψ1εt−1 + . . . , (42)

with εt = P−1ut and Ψi = ΦiP for i = 0, 1, 2, . . . and
Ψ0 = P.

Confidence bands by bootstrapping.

R Resources

Methods irf, Phi and Psi in package vars.
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Impulse Response Function, III

R Code

> irf.y1 <- irf(varsimest, impulse = "y1", response = "y2", n.ahead = 10, ortho = FALSE,

+ cumulative = FALSE, boot = TRUE, seed = 12345)

> irf.y2 <- irf(varsimest, impulse = "y2", response = "y1", n.ahead = 10, ortho = FALSE,

+ cumulative = FALSE, boot = TRUE, seed = 12345)

> plot(irf.y1)

> plot(irf.y2)
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Figure: IRF of y1
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Forecast Error Variance Decomposition, I

FEVD: based on orthogonalized impulse response coefficient
matrices Ψn

Analyze the contribution of variable j to the h-step forecast
error variance of variable k.

Element-wise squared orthogonalized impulse responses are
divided by the variance of the forecast error variance, σ2

k(h):

ωkj(h) = (ψ2
kj,0 + . . .+ ψ2

kj,h−1)/σ2
k(h) . (43)

R Resources

Method fevd in package vars.
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Forecast Error Variance Decomposition, II

R Code

> fevd.var2 <- fevd(varsimest, n.ahead = 10)

> plot(fevd.var2)
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Figure: FEVD of y1
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Models, I

VAR can be viewed as a reduced form model.

SVAR is its structural form and is defined as:

Ayt = A∗1yt−1 + . . .+ A∗pyt−p + Bεt . (44)

Structural errors: εt are white noise.

Coefficient matrices: A∗i for i = 1, . . . , p, are structural
coefficients that might differ from their reduced form
counterparts.

Use of SVAR: identify shocks and trace these out by IRF
and/or FEVD through imposing restrictions on the matrices
A and/or B.
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Models, II

Reduced form residuals can be retrieved from a SVAR-model
by ut = A−1Bεt and its variance-covariance matrix by
Σu = A−1BB ′A−1′ .

A model: B is set to IK (minimum number of restrictions for
identification is K (K − 1)/2 ).

B model: A is set to IK (minimum number of restrictions for
identification is K (K − 1)/2).

AB model: restrictions can be placed on both matrices
(minimum number of restrictions for identification is
K 2 + K (K − 1)/2).
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Estimation

Directly, by minimizing the negative of the Log-Likelihood:

ln Lc(A,B) =− KT

2
ln(2π) +

T

2
ln |A|2 − T

2
ln |B|2

− T

2
tr(A′B ′−1B−1AΣ̃u) ,

(45)

Scoring algorithm proposed by Amisano and Giannini (1997).

Over-identification test:

LR = T (log det(Σ̃r
u)− log det(Σ̃u)) (46)

with Σ̃u: reduced form variance-covariance matrix and Σ̃r
u:

restricted structural form estimation.

R Resources

Functions BQ and SVAR in package vars.
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A-Model, I

The Model

[
1.0 0.7
−0.4 1.0

] [
y1

y2

]
t

=

[
0.5 0.2
−0.2 −0.5

] [
y1

y2

]
t−1

+[
−0.3 −0.7
−0.1 0.3

] [
y1

y2

]
t−2

+

[
ε1

ε2

]
t

Restrictions
Restrictions for A matrix in explicit form:

vec (A) =Raγa + ra
1
α21

α12

1

 =


0 0
1 0
0 1
0 0

[γ1

γ2

]
+


1
0
0
1
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A-Model, II

R Code

> Apoly <- array(

+ c(1.0, -0.5, 0.3, -0.4,

+ 0.2, 0.1, 0.7, -0.2,

+ 0.7, 1, 0.5, -0.3) ,

+ c(3, 2, 2))

> B <- diag(2)

> svarA <- ARMA(A = Apoly, B = B)

> svarsim <- simulate(svarA,

+ sampleT = 500, rng = list(seed = c(123)))

> svardat <- matrix(svarsim$output,

+ nrow = 500, ncol = 2)

> colnames(svardat) <- c("y1", "y2")

> A <- diag(2)

> A[2, 1] <- NA

> A[1, 2] <- NA

> varest <- VAR(svardat, p = 2, type = "none")

> svara <- SVAR(varest, estmethod = "scoring",

+ Amat = A)

R Output

y1 y2
y1 1.00 0.76
y2 −0.39 1.00

Table: A matrix

y1 y2
y1 0.00 0.06
y2 0.05 0.00

Table: S.E. of A
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B-Model, I

The Model

[
y1

y2

]
t

=

[
0.5 0.2
−0.2 −0.5

] [
y1

y2

]
t−1

+[
−0.3 −0.7
−0.1 0.3

] [
y1

y2

]
t−2

+

[
1.0 0.0
−0.8 1.0

] [
ε1

ε2

]
t

Restrictions
Restrictions for B matrix in explicit form:

vec (B) =Rbγb + rb
1
β21

0
1

 =


0
1
0
0

 [γ1

]
+


1
0
0
1





Tutorial:
Analysis of

Integrated and
Cointegrated Time

Series

Pfaff

Univariate Time
Series

Definitions

Representation / Models

Non-stationary Processes

Statistical Tests

Multivariate Time
Series

VAR

SVAR

Cointegration

SVEC

Topics Left Out

Monographs

R packages

SVAR
B-Model, II

R Code

> Apoly <- array(

+ c(1.0, -0.5, 0.3, 0,

+ 0.2, 0.1, 0.0, -0.2,

+ 0.7, 1.0, 0.5, -0.3) ,

+ c(3, 2, 2))

> B <- diag(2)

> B[2, 1] <- -0.8

> svarB <- ARMA(A = Apoly, B = B)

> svarsim <- simulate(svarB, sampleT = 500,

+ rng = list(seed = c(123456)))

> svardat <- matrix(svarsim$output,

+ nrow = 500, ncol = 2)

> colnames(svardat) <- c("y1", "y2")

> B <- diag(2)

> B[2, 1] <- NA

> varest <- VAR(svardat, p = 2, type = "none")

> svarb <- SVAR(varest, Bmat = B)

R Output

y1 y2
y1 1.00 0.00
y2 −0.84 1.00

Table: B matrix

y1 y2
y1 0.00 0.00
y2 0.04 0.00

Table: S.E. of B
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Impulse Response Analysis, I

Impulse response coefficients for SVAR:

Θi = ΦiA
−1B for i = 1, . . . , n. (47)

Orthogonalization not meaningful, hence not
implemented

R Resources

Method irf in package vars.
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Impulse Response Analysis, II

R Code

> irf.y1 <- irf(svara, impulse = "y1", response = "y2", n.ahead = 10,

+ cumulative = FALSE, boot = FALSE, seed = 12345)

> irf.y2 <- irf(svara, impulse = "y2", response = "y1", n.ahead = 10,

+ cumulative = FALSE, boot = FALSE, seed = 12345)

> plot(irf.y1)

> plot(irf.y2)
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Figure: IRF of y1

2 4 6 8 10

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

xy$x

y1

SVAR Impulse Response from y2

Figure: IRF of y2



Tutorial:
Analysis of

Integrated and
Cointegrated Time

Series

Pfaff

Univariate Time
Series

Definitions

Representation / Models

Non-stationary Processes

Statistical Tests

Multivariate Time
Series

VAR

SVAR

Cointegration

SVEC

Topics Left Out

Monographs

R packages

SVAR
Forecast Error Variance Decomposition, I

Forecast errors of yT+h|T are derived from the impulse
responses of SVAR and the derivation to the forecast
error variance decomposition is similar to the one
outlined for VARs.

R Resources

Method fevd in package vars.
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Forecast Error Variance Decomposition, II

R Code

> fevd.svarb <- fevd(svarb, n.ahead = 10)

> plot(fevd.svarb)
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Figure: FEVD of y1
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Spurious Regression, I

Problem

I(1) variables that are not cointegrated are regressed on each
other.

Slope coefficients do not converge in probability to zero.

t-statistics diverge to ±∞ as T →∞.

R2 tends to unity with T →∞.

Rule-of-thumb: Be cautious when R2 is greater than DW
statistic.

Literature
Phillips, P.C.B., Understanding Spurious Regression in Econometrics, Journal of Econometrics,
33 (1986), 311–340.
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Spurious Regression, II

R Code

> library(lmtest)

> set.seed(54321)

> e1 <- rnorm(500)

> e2 <- rnorm(500)

> y1 <- cumsum(e1)

> y2 <- cumsum(e2)

> sr.reg1 <- lm(y1 ~ y2)

> sr.dw <- dwtest(sr.reg1)

> sr.reg2 <- lm(diff(y1) ~ diff(y2))

R Output

I(1) not cointegrated
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Figure: Spurious relation
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Spurious Regression, III

R Output

Estimate Std. Error t value Pr(>|t|)
(Intercept) −1.9532 0.3696 −5.28 0.0000

y2 0.1427 0.0165 8.63 0.0000

Table: Level regression

For the level regression the R2 is 0.13 and the DW statistic is
0.051.

Estimate Std. Error t value Pr(>|t|)
(Intercept) −0.0434 0.0456 −0.95 0.3413

diff(y2) −0.0588 0.0453 −1.30 0.1942

Table: Difference regression
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Cointegration
Definition, I

Definition
The components of the vector yt are said to be cointegrated of

order d, b, denoted yt ∼ CI (d , b), if (a) all components of yt are

I (d); and (b) a vector β(6= 0) exists so that

zt = β′yt ∼ I (d − b), b > 0. The vector β is called the

cointegrating vector.

Common Trends
If the (n × 1) vector yt is cointegrated with 0 < r < n
cointegrating vectors, then there are n − r common I (1)
stochastic trends.

Literature
Engle, R.F. and C.W.J. Granger, Co-Integration and Error Correction: Representation,
Estimation and Testing, Econometrica, 55 (1987), 251–276.
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Cointegration
Definition, II

R Code

> set.seed(12345)

> e1 <- rnorm(250, mean = 0, sd = 0.5)

> e2 <- rnorm(250, mean = 0, sd = 0.5)

> u.ar3 <- arima.sim(model =

+ list(ar = c(0.6, -0.2, 0.1)), n = 250,

+ innov = e1)

> y2 <- cumsum(e2)

> y1 <- u.ar3 + 0.5*y2

> ymax <- max(c(y1, y2))

> ymin <- min(c(y1, y2))

> layout(matrix(1:2, nrow = 2, ncol = 1))

> plot(y1, xlab = "", ylab = "", ylim =

+ c(ymin, ymax), main =

+ "Cointegrated System")

> lines(y2, col = "green")

> plot(u.ar3, ylab = "", xlab = "", main =

+ "Cointegrating Residuals")

> abline(h = 0, col = "red")

R Output

Cointegrated System
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Figure: Bivariate Cointegration
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Error Correction Model

Definition
Bivariate I (1) vector yt = (y1t , y2t)′ with cointegrating vector
β = (1,−β2)′, hence β′yt = y1t − β2y2t ∼ I (0), then an ECM
exists in the form of:

∆y1,t = α1 + γ1(y1,t−1 − β2y2,t−1) +
K∑

i=1

ψ1,i∆y1,t−i

+
L∑

i=1

ψ2,i∆y2,t−i + ε1,t ,

∆y2,t = α2 + γ2(y1,t−1 − β2y2,t−1)t−1 +
K∑

i=1

ξ1,i∆y1,t−i

+
L∑

i=1

ξ2,i∆y2,t−i + ε2,t .
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Cointegration
Engle & Granger Two-Step Procedure, I

1 Estimate long-run relationship, i.e., regression in levels and
test residuals for I (0).

2 Take residuals from first step and use it in ECM regression.

Wahrschau: If ADF-test is used, you need CV provided in
Engle & Yoo.

OLS-estimator is super consistent, convergence T .

However, OLS can be biased in small samples!

Literature
Engle, R. and B. Yoo, Forecasting and Testing in Co-Integrated Systems, Journal of
Econometrics, 35 (1987), 143–159.
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Cointegration
Engle & Granger Two-Step Procedure, II

R Code

> library(dynlm)

> lr <- lm(y1 ~ y2)

> ect <- resid(lr)[1:249]

> dy1 <- diff(y1)

> dy2 <- diff(y2)

> ecmdat <- cbind(dy1, dy2, ect)

> ecm <- dynlm(dy1 ~ L(ect, 1) + L(dy1, 1)

+ + L(dy2, 1) , data = ecmdat)

R Output

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0064 0.0376 0.17 0.8646

L(ect, 1) −0.6216 0.0725 −8.58 0.0000
L(dy1, 1) −0.4235 0.0703 −6.03 0.0000
L(dy2, 1) 0.3171 0.0911 3.48 0.0006

Table: Results for ECM
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Cointegration
Phillips & Ouliaris, I

Residual-based tests: Variance Ratio Test & Trace Statistic.

Based on regression:

zt = Πzt−1 + ξt , (48)

where zt is partitioned as zt = (yt , x′t) with a dimension of xt

equal to (m = n + 1).

Null hypothesis: Not cointegrated.
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Cointegration
Phillips & Ouliaris, II

R Resources

Function ca.po in package urca.

Function po.test in package tseries.

Literature
Phillips, P.C.B. and S. Ouliaris, S., Asymptotic Properties of Residual Based Tests for
Cointegration, Econometrica, 58 (1) (1990), 165–193.
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Phillips & Ouliaris, III

R Code

> z <- cbind(y1, y2)

> po.Pu <- ca.po(z, demean = "none", type = "Pu")

> po.Pz <- ca.po(z, demean = "none", type = "Pz")

R Output

Statistic 10pct 5pct 1pct
Pu 167.44 20.39 25.97 38.34
Pz 176.09 33.93 40.82 55.19

Table: Test Statistics
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Definition

VAR:

yt = A1yt−1 + . . .+ Apyt−p + CDt + ut ,

Transitory form of VECM:

∆yt = Γ1∆yt−1 + . . .+ ΓK−1∆yt−p+1 + Πyt−1 + CDt + εt ,

Γi = −(Ai+1 + . . .+ Ap) , for i = 1, . . . , p − 1 ,

Π = −(I − A1 − · · · − Ap) .

Long-run form of VECM:

∆yt = Γ1∆yt−1 + . . .+ Γp−1∆yt−p+1 + Πyt−p + CDt + εt ,

Γi = −(I − A1 − . . .− Ai ) , for i = 1, . . . , p − 1 ,

Π = −(I − A1 − · · · − Ap)
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The Π matrix

1 rk(Π) = n, all n combinations must be stationary for
balancing: yt must be stationary around deterministic
components; standard VAR-model in levels.

2 rk(Π) = 0, no linear combination exists, such that Πyt−1 is
stationary, except the trivial solution; VAR-model in first
differences.

3 0 < rk(Π) = 0 < r < n, interesting case: Π = αβ′ with
dimensions (n × r) and β′yt−1 is stationary. Each column of
β represents one long-run relationship.
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Example

R Code

> set.seed(12345)

> e1 <- rnorm(250, 0, 0.5)

> e2 <- rnorm(250, 0, 0.5)

> e3 <- rnorm(250, 0, 0.5)

> u1.ar1 <- arima.sim(model = list(ar=0.75),

+ innov = e1, n = 250)

> u2.ar1 <- arima.sim(model = list(ar=0.3),

+ innov = e2, n = 250)

> y3 <- cumsum(e3)

> y1 <- 0.8 * y3 + u1.ar1

> y2 <- -0.3 * y3 + u2.ar1

> ymax <- max(c(y1, y2, y3))

> ymin <- min(c(y1, y2, y3))

> plot(y1, ylab = "", xlab = "",

+ ylim = c(ymin, ymax))

> lines(y2, col = "red")

> lines(y3, col = "blue")

R Output

0 50 100 150 200 250

−
2

0
2

4
6 y1

y2
y3

Figure: Simulated VECM
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Inference

Based on canonical correlations between yt and ∆yt with
lagged differences.

Correlations:

S00 =
1

T

T∑
t=1

ût û
′
t , S01 = S10 =

T∑
t=1

ût v̂
′
t , S11 =

1

T

T∑
t=1

v̂t v̂
′
t

Eigenvalues:
|λS11 − S10S

−1
00 S01| = 0

LR-tests: Eigen- and Trace-test.

Nested Hypothesis: H(0) ⊂ · · · ⊂ H(r) ⊂ · · · ⊂ H(n).
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Resources

R Resources

Functions ca.jo, cajorls, cajools, cajolst in package
urca.

Hypothesis Testing: alrtest, ablrtest, blrtest,
bh5lrtest, bh6lrtest and lttest in package urca.

Function vec2var in package vars.

Literature
Johansen, S., Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and
Control, 12 (1988), 231–254.

Johansen, S. and K. Juselius, Maximum Likelihood Estimation and Inference on Cointegration -
with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics, 52(2)
(1990), 169–210.

Johansen, S., Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector
Autoregressive Models, Econometrica, 59(6) (1991), 1551–1580.
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Estimation, I

R Code

> y.mat <- data.frame(y1, y2, y3)

> vecm1 <- ca.jo(y.mat, type = "eigen", spec = "transitory")

> vecm2 <- ca.jo(y.mat, type = "trace", spec = "transitory")

> vecm.r2 <- cajorls(vecm1, r = 2)

R Output

Statistic 10pct 5pct 1pct
r <= 2 | 4.72 6.50 8.18 11.65
r <= 1 | 41.69 12.91 14.90 19.19

r = 0 | 78.17 18.90 21.07 25.75

Table: Maximal Eigenvalue Test

Statistic 10pct 5pct 1pct
r <= 2 | 4.72 6.50 8.18 11.65
r <= 1 | 46.41 15.66 17.95 23.52

r = 0 | 124.58 28.71 31.52 37.22

Table: Trace Test
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Estimation, II

R Output

y1.d y2.d y3.d
ect1 −0.33 0.06 0.01
ect2 0.09 −0.71 −0.01

constant 0.17 −0.03 0.03
y1.dl1 0.10 −0.04 0.06
y2.dl1 0.05 −0.01 0.05
y3.dl1 −0.15 −0.03 −0.06

Table: VECM with r = 2

ect1 ect2
y1.l1 1.00 0.00
y2.l1 0.00 1.00
y3.l1 −0.73 0.30

Table: Normalized CI-relations
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Prediction, IRF, FEVD, I

Convert restricted VECM to level-VAR.

Prediction, IRF, FEVD and diagnostic checking applies
likewise to stationary VAR(p)-models as shown in previous
slides.

R Resources

Function vec2var in package vars.
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Prediction, IRF, FEVD, II

R Code

> vecm.level <- vec2var(vecm1, r = 2)

> vecm.pred <- predict(vecm.level,

+ n.ahead = 10)

> fanchart(vecm.pred)

> vecm.irf <- irf(vecm.level, impulse = 'y3',
+ response = 'y1', boot = FALSE)

> vecm.fevd <- fevd(vecm.level)

> vecm.norm <- normality.test(vecm.level)

> vecm.arch <- arch.test(vecm.level)

> vecm.serial <- serial.test(vecm.level)

R Output

constant
y1 0.17
y2 −0.03
y3 0.03

Table: Implied Constant

R Output

y1.l1 y2.l1 y3.l1
y1 0.77 0.14 0.12
y2 0.03 0.28 −0.29
y3 0.07 0.04 0.92

Table: Implied A1

y1.l2 y2.l2 y3.l2
y1 −0.10 −0.05 0.15
y2 0.04 0.01 0.03
y3 −0.06 −0.05 0.06

Table: Implied A2
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Prediction, IRF, FEVD, III

R Output

Forecast of series y1

0 50 100 150 200 250

−
2

0
2

4
6

Figure: Prediction of y1

R Output

Fanchart for variable y2

0 50 100 150 200 250

−
3

−
2

−
1

0
1

Figure: Fanchart of y2
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Prediction, IRF, FEVD, IV

R Output
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Figure: IRF of y3 to y1

R Output
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Figure: FEVD of VECM
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Linear Trend Test, I

Test if linear trend in VAR is existent.

This corresponds to the inclusion of a constant in the error
correction term.

Statistic is distributed as χ2 square with (K − r) degrees of
freedom.

R Resources

Function lttest in package urca.
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Linear Trend Test, II

R Code

> data(denmark)

> sjd <- as.matrix(denmark[,

+ c("LRM", "LRY", "IBO", "IDE")])

> sjd.vecm <- ca.jo(sjd, ecdet = "const",

+ type = "eigen", K = 2, spec="longrun",

+ season=4)

> lttest.1 <- lttest(sjd.vecm, r=1)

> data(finland)

> sjf <- as.matrix(finland)

> sjf.vecm <- ca.jo(sjf, ecdet = "none",

+ type = "eigen", K=2, spec="longrun",

+ season=4)

> lttest.2 <- lttest(sjf.vecm, r=3)

R Output

Statistic p-value
Denmark 1.98 0.58

Finland 4.78 0.03

Table: Linear Trend Test
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Restrictions on Loadings, I

Testing exogenity, i.e., certain variables do not enter into the
cointegration relation(s).

Likelihood ratio test for the hypothesis:

H4 : α = AΨ , (49)

with (r(K −m)) degrees of freedom.

R Resources

Function alrtest in package urca.
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Restrictions on Loadings, II

R Code

> data(UKpppuip)

> attach(UKpppuip)

> dat1 <- cbind(p1, p2, e12, i1, i2)

> dat2 <- cbind(doilp0, doilp1)

> H1 <- ca.jo(dat1, K = 2, season = 4,

+ dumvar=dat2)

> A1 <- matrix(c(1,0,0,0,0,

+ 0,0,1,0,0,

+ 0,0,0,1,0,

+ 0,0,0,0,1), nrow=5, ncol=4)

> A2 <- matrix(c(1,0,0,0,0,

+ 0,1,0,0,0,

+ 0,0,1,0,0,

+ 0,0,0,1,0), nrow=5, ncol=4)

> H41 <- summary(alrtest(z = H1,

+ A = A1, r = 2))

> H42 <- summary(alrtest(z = H1,

+ A = A2, r = 2))

R Output

Statistic p-value
Exog. p2 0.66 0.72
Exog. i2 4.38 0.11

Table: Testing Exogenity
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Restrictions on CI-Relations, I

Tests do not depend on normalization of β.

Tests are Likelihood ratio tests, similar for testing restrictions
on α.

1 Testing restrictions for all cointegration relations.

2 r1 cointegrating relations are assumed to be known and r2

cointegrating relations have to be estimated, r = r1 + r2.

3 r1 cointegrating relations are estimated with restrictions and
r2 cointegrating relations are estimated without constraints,
r = r1 + r2.
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Restrictions on CI-Relations, II

Following previous example: Test purchasing power parity
and interest rate differential contained in all CI relations.

Hypothesis: H3 : β = H3ϕ with H3(K × s), ϕ(s × r) and
r ≤ s ≤ K : sp(β) ⊂ sp(H3).

Functions blrtest and ablrtest in package urca.

Literature
Johansen, S. and K. Juselius, Testing structural hypothesis in a multivariate cointegration
analysis of the PPP and the UIP for UK, Journal of Econometrics, 53 (1992), 211–244.

Johansen, S., Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and
Control, 12 (1988), 231–254.

Johansen, S. and K. Juselius, Maximum Likelihood Estimation and Inference on Cointegration
— with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics,
52(2) (1990), 169–210.

Johansen, S., Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector
Autoregressive Models, Econometrica, 59(6) (1991), 1551–1580.
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Restrictions on CI-Relations, III

R Code

> H.31 <- matrix(c(1,-1,-1,0,0,

+ 0,0,0,1,0,

+ 0,0,0,0,1), c(5,3))

> H.32 <- matrix(c(1,0,0,0,0,

+ 0,1,0,0,0,

+ 0,0,1,0,0,

+ 0,0,0,1,-1), c(5,4))

> H31 <- blrtest(z = H1, H = H.31, r = 2)

> H32 <- blrtest(z = H1, H = H.32, r = 2)

R Output

Statistic p-value
All CI: PPP 2.76 0.60

All CI: ID 13.71 0.00

Table: H3 - Tests

PPP in all CI relations: Cannot be rejected.

ID in all CI relations: Must be rejected.
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Restrictions on CI-Relations, IV

Following previous example: Test purchasing power parity
and interest rate differential directly, i.e. (1,−1,−1, 0, 0) and
(0, 0, 0, 1,−1).

In contrast to previous hypothesis H3, which tested:
(ai ,−ai ,−ai , ∗, ∗) and (∗, ∗, ∗, bi ,−bi ) for i = 1, . . . , r .

Hypothesis: H5 : β = (H5,Ψ) with H5(K × r1), Ψ(K × r2),
r = r1 + r2: sp(H5) ⊂ sp(β).

Function bh5lrtest in package urca.
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Restrictions on CI-Relations, V

R Code

> H.51 <- c(1, -1, -1, 0, 0)

> H.52 <- c(0, 0, 0, 1, -1)

> H51 <- bh5lrtest(z = H1, H = H.51, r = 2)

> H52 <- bh5lrtest(z = H1, H = H.52, r = 2)

R Output

Statistic p-value
Exact PPP 14.52 0.00

Exact ID 1.89 0.59

Table: H5 - Tests

Reject stationarity of
PPP.

Cannot reject stationarity
for ID.
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VECM
Restrictions on CI-Relations, VI

Following previous example: Strict PPP not stationary; now
test if general CI-relation (a, b, c, 0, 0) exist.

In contrast to previous hypothesis H5, which tested:
(1,−1,−1, 0, 0).

H6 : β = (H6ϕ,Ψ) with H6(K × s), ϕ(s × r1), Ψ(K × r2),
r1 ≤ s ≤ K , r = r1 + r2: dim(sp(β) ∩ sp(H6)) ≥ r1.

Function bh6lrtest in package urca.



Tutorial:
Analysis of

Integrated and
Cointegrated Time

Series

Pfaff

Univariate Time
Series

Definitions

Representation / Models

Non-stationary Processes

Statistical Tests

Multivariate Time
Series

VAR

SVAR

Cointegration

SVEC

Topics Left Out

Monographs

R packages

VECM
Restrictions on CI-Relations, VII

R Code

> H.6 <- matrix(rbind(diag(3),

+ c(0, 0, 0),

+ c(0, 0, 0)), nrow=5, ncol=3)

> H6 <- bh6lrtest(z = H1, H = H.6,

+ r = 2, r1 = 1)

R Output

Statistic p-value
General PPP 4.93 0.03

Table: H6 - Tests

Statistic insignificant at 1% level.
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Definition, I

Variables are at most I (1) and DGP is a VECM:

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut (50)

for t = 1, . . . ,T .

SVECM is a B-model with ut = Bεt and Σu = BB ′.

For unique identification of B, 1
2K (K − 1) at least

restrictions are required.

Granger’s representation theorem:

yt = Ξ
t∑

i=1

ui +
∞∑
j=0

Ξ∗j ut−j + y∗0 (51)
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Definition, II

Ξ
∑t

i=1 ui are the common trends; rank of Ξ is K − r .

Matrix Ξ has the form:

Ξ = β⊥

[
α′⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′⊥ (52)

Substitution yields: Ξ
∑t

i=1 ui = ΞB
∑t

i=1 εt .

Hence, long-run effects of structural innovations are given by
ΞB.

At most r innovations can have transitory effects and at least
K − r have permanent effects.
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R Resources

Function SVEC in package vars.

Methods irf and fevd in package vars.

Method plot for irf and fevd in package vars.

Literature
King, R., C. Plosser, J. Stock and M. Watson, Stochastic Trends and economic fluctuations,
American Economic Review 81 (1991), 819–840.

Lütkepohl, H. and M. Krätzig, Applied Time Series Econometrics, 2004, Cambridge.
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Example Canada

R Code

> library(vars)

> data(Canada)

> vec.can <- ca.jo(Canada, K = 2,

+ spec = "transitory", season = 4)

> LR <- matrix(0, nrow = 4, ncol = 4)

> LR[, c(1, 2)] <- NA

> SR <- matrix(NA, nrow = 4, ncol = 4)

> SR[3, 4] <- 0

> SR[4, 2] <- 0

> svecm <- SVEC(vec.can, r = 2, LR = LR,

+ SR = SR, max.iter = 200,

+ lrtest = TRUE, boot = FALSE)

> svecm.irf <- irf(svecm, impulse = "e",

+ response = "rw", boot = FALSE,

+ cumulative = FALSE, runs = 100)

> svecm.fevd <- fevd(svecm)

R Output

e prod rw U
e 0.05 −0.22 0.06 −0.26

prod −0.52 0.19 −0.12 −0.23
rw −0.08 0.37 0.56 0.00
U −0.13 0.00 0.04 0.22

Table: Impact Matrix B

e prod rw U
e −0.41 −0.47 0.00 0.00

prod −0.51 0.63 0.00 0.00
rw −0.67 −0.66 0.00 0.00
U 0.09 0.05 0.00 0.00

Table: Long-run Matrix ΞB
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IRF and FEVD
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Near-integrated processes (see packages: longmemo,
fracdiff and fArma).

Seasonal unit roots (see package uroot).

Bayesian VAR models (see package MSBVAR).
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Selected Monographes

G. Amisano and C. Giannini

Topics in Structural Var Econometrics.
Springer, 1997.

A. Banerjee, J.J. Dolado, J.W. Galbraith and D.F. Hendry

Co-Integration, Error-Correction, and the Econometric Analysis of Non-Stationary Data.
Oxford University Press, 1993.

J. Beran

Statistics for Long-Memory Processes
Chapman & Hall, 1994

J.D. Hamilton.

Time Series Analysis.
Princeton University Press, 1994.

S. Johansen.

Likelihood Based Inference in Cointegrated Vector Autoregressive Models.
Oxford University Press, 1995.

H. Lütkepohl.

New Introduction to Multiple Time Series Analysis.
Springer, 2006.
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R packages

Name Title Version
dse1 Dynamic Systems Estimation (time series package) 2007.11-1
dynlm Dynamic Linear Regression 0.2-0
fArma Rmetrics - ARMA Time Series Modelling 260.72
fBasics Rmetrics - Markets and Basic Statistics 260.72
fracdiff Fractionally differenced ARIMA aka ARFIMA(p,d,q) models 1.3-1
fUnitRoots Rmetrics - Trends and Unit Roots 260.72
lmtest Testing Linear Regression Models 0.9-21
longmemo Statistics for Long-Memory Processes (Jan Beran) – Data

and Functions
0.9-5

mAr Multivariate AutoRegressive analysis 1.1-1
MSBVAR Markov-Switching Bayesian Vector Autoregression Models 0.3.1
tseries Time series analysis and computational finance 0.10-15
vars VAR Modelling 1.4-0
urca Unit root and cointegration tests for time series data 1.1-6
uroot Unit Root Tests and Graphics for Seasonal Time Series 1.4

Table: Overview of cited R packages
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