R package **mcrp**: Multiple criteria risk contribution optimization

Bernhard Pfaff

bernhard_pfaff@fra.invesco.com

Invesco Asset Management GmbH Frankfurt am Main

R in Finance, Chicago IL, 19 and 20 May 2017

Contents

- Overview
- 2 Multiple criteria risk optimization
- 3 R package mcrp
- 4 Empirical application
- **5** Summary
- 6 Bibliography

Overview

- The concept of risk parity (aka ERC) is due to Qian (2005, 2006, 2011) (see also Maillard et al., 2010; Roncalli, 2013).
- Hereby, the contributions with respect to the portfolio standard deviation risk of the constituents are equal.
- Recently, this concept has been extended to include the higher-moment risk contributions (see Baitinger et al., 2017), i.e., skewness and kurtosis.
- In this talk:
 - Optimization problem of multiple criteria risk contributions.
 - 2 Structure of the R package mcrp.
 - 6 Empirical application to a multi-asset class portfolio.

Multiple criteria risk optimization

Higher Moments: Definitions

Definitions provided in Jondeau and Rockinger (2006):

$$\sigma_p^2 = E\left[\sum_{i=1}^n \omega_i (R_i - \mu_i)(r_p - \mu_p)\right] = \omega' \Sigma_p$$
$$= \omega' M_2 \omega$$

$$\mathbf{s}_{p}^{3} = \mathsf{E}\left[\sum_{i=1}^{n} \omega_{i} (R_{i} - \mu_{i}) (r_{p} - \mu_{p})^{2}\right] = \omega' \mathsf{S}_{p}$$
$$= \omega' M_{3}(\omega \otimes \omega)$$

$$\kappa_p^4 = \mathsf{E}\left[\sum_{i=1}^n \omega_i (R_i - \mu_i) (r_p - \mu_p)^3\right] = \omega' \mathsf{K}_p$$
$$= \omega' \mathsf{M}_{\Delta}(\omega \otimes \omega \otimes \omega)$$

Multiple criteria risk optimization

Higher Moments: Partial Derivatives

$$\begin{aligned} \mathsf{MRC}_2 &= \frac{\delta \sigma_p^2}{\delta \omega} = 2 \mathit{M}_2 \omega \qquad \qquad \mathsf{and} \quad \mathsf{ARC}_2 = \mathsf{MRC}_2 \times \omega \\ \mathsf{MRC}_3 &= \frac{\mathsf{s}_p^3}{\delta \omega} = 3 \mathit{M}_3 (\omega \otimes \omega) \qquad \qquad \mathsf{and} \quad \mathsf{ARC}_3 = \mathsf{MRC}_3 \times \omega \\ \mathsf{MRC}_4 &= \frac{\kappa_p^4}{\delta \omega} = 4 \mathit{M}_4 (\omega \otimes \omega \otimes \omega) \qquad \qquad \mathsf{and} \quad \mathsf{ARC}_4 = \mathsf{MRC}_4 \times \omega \end{aligned}$$

Matrices $(n \times n)$ M_2 , $(n \times n^2)$ M_3 , $(n \times n^3)$ M_4 are the centred (tensor) product moment matrices:

$$\begin{aligned} M_2 &= \mathsf{E} \left[(R - \mu)(R - \mu)' \right] &= \{ \sigma_{ij} \} \\ M_3 &= \mathsf{E} \left[(R - \mu)(R - \mu)' \otimes (R - \mu)' \right] &= \{ \mathsf{s}_{ijk} \} \\ M_4 &= \mathsf{E} \left[(R - \mu)(R - \mu)' \otimes (R - \mu)' \otimes (R - \mu)' \right] &= \{ \kappa_{ijkl} \} \end{aligned}$$

Multiple criteria risk optimization

Problem formulation

minimize
$$F(\omega) = \lambda_1 \text{VAR}(ARC_2) + \lambda_2 \text{VAR}(ARC_3) + \lambda_3 \text{VAR}(ARC_4)$$

subject to $\sum_{i=1}^n \omega_i = 1$
 $0 \leq \omega_i \leq 1 \ \text{ for } i = 1, \dots, n$.

Pfaff (Invesco) mcrp RFinance 2017 6 / 18

R package mcrp

Structure

- Package is purely written in R.
- Dependencies to FRAPO (see Pfaff, 2016) and suggests testthat (see Wickham, 2011) for unit testing.
- Optimization conducted with stats::nlmnib().
- Core function: mcrp().
- Auxilliary functions: Portfoo(), PortfooDeriv(),
 PortfooContrib() with foo = {Risk, Skew, Kurt}.
- Available on GitHub: https://github.com/bpfaff/mcrp

R package mcrp

Core function: Input

Function mcrp()

```
> args(mcrp)
function (start, returns, lambda = c(1, 1, 1), ...)
NULL
```

Arguments

- start: vector of starting values.
- returns: matrix of assets' returns.
- lambda: selection/weighting of sub-objectives; set element(s) to NA for exclusion.
- ...: ellipsis argument is passed down to stats::nlmnib().

Pfaff (Invesco) mcrp RFinance 2017 8 / 18

R package mcrp

Core function: Output

> showClass("PortSol")

S4-Class: PortSol from package **FRAPO**

```
Class "PortSol" [package "FRAPO"]

Slots:

Name: weights opt type call class: numeric list character call

Known Subclasses: "PortCdd", "PortAdd", "PortMdd"
```

Slots

- weights: portfolio weight vector.
- opt: list object returned by stats::nlmnib().
- type: decsription of portfolio problem.
- call: the call to mcrp() (used for stats::update()-method).

Specification

- Data set MultiAsset contained in FRAPO: month-end data from 11/2004 until 11/2011.
- Portfolio optimizations with respect to:
 - 1 single criteria: contrib. to risk.
 - single criteria: contrib. to skewness.
 - 3 single criteria: contrib. to kurtosis.
 - 4 multiple criteria: contrib. to risk and skewness.
 - 5 multiple criteria: contrib. to risk and kurtosis.
 - o multiple criteria: contrib. to risk, skewness and kurtosis.

R code: Data and descriptive statistics

Kurtosis	
6	
6	
1	
0	
2	

Table: Empirical higher-moments

R code: Portfolio optimizations

```
> ## single criteria: contrib. to risk
> p100 <- mcrp(ew, R, lambda = c(1, NA, NA), lower = 0)
> ## single criteria: contrib. to skewness
> p010 \leftarrow mcrp(ew, R, lambda = c(NA, 1, NA), lower = 0)
> ## single criteria: contrib. to kurtosis
> p001 <- mcrp(ew, R, lambda = c(NA, NA, 1), lower = 0)
> ## multiple criteria: contrib. to risk and skewness
> p110 <- mcrp(ew, R, lambda = c(1, 1, NA), lower = 0)
> ## multiple criteria: contrib. to risk and kurtosis
> p101 <- mcrp(ew, R, lambda = c(1, NA, 1), lower = 0)
> ## multiple criteria: contrib. to risk, skewness and kurtosis
> p111 <- mcrp(ew, R, lambda = c(1, 1, 1), lower = 0)
> ## aggregating results to list object
> popt <- list(p100, p010, p001, p110, p101, p111)
> pn <- length(popt)
> pnames <- c("p100", "p010", "p001", "p110", "p101", "p111")
> names(popt) <- pnames
> ## checking solutions
> (sopt <- unlist(lapply(popt, function(x) Solution(x)$convergence)))
p100 p010 p001 p110 p101 p111
   0 0 0 0 0 0
```

R code: Allocations

```
> wopt <- lapply(popt, Weights)
> wmat <- matrix(unlist(wopt), nrow = K, ncol = pn)
> colnames(wmat) <- pnames
> rownames(wmat) <- colnames(P)
> ans <- round(wmat * 100, 2)</pre>
```

Index	p100	p010	p001	p110	p101	p111
GSPC	19.47	17.43	18.16	18.09	18.77	18.07
GDAXI	17.24	21.43	21.45	21.42	21.01	21.46
FTSE	22.13	31.99	30.13	30.27	28.76	30.21
EEM	10.99	12.18	11.60	12.42	11.87	12.01
GLD	30.17	16.97	18.66	17.80	19.58	18.25

Table: Optimal allocations

R code: In-sample characteristics, part I

```
> ## Function for higher moments and portfolio contributions
> momis <- function(w, r = R){
      a1 <- PortRisk(r, w)
     a2 <- PortSkew(r. w)
     a3 <- PortKurt(r, w)
     a4 <- sd(PortRiskContrib(r, w))
     a5 <- sd(PortSkewContrib(r, w))
     a6 <- sd(PortKurtContrib(r, w))
     a7 \leftarrow mean(c(a4, a5, a6))
      a <- c(a1, a2, a3, a4, a5, a6, a7)
+ 7
> ans <- matrix(unlist(lapply(wopt, momis)), ncol = pn)
> colnames(ans) <- pnames
> rownames(ans) <- c("Risk", "Skewness", "Kurtosis",
                     "Sd Risk ctrb.", "Sd Skew ctrb.", "Sd Kurt ctrb.",
                     "Average of Sd")
```

R code: In-sample characteristics, part II

Measure	p100	p010	p001	p110	p101	p111
Moments						
Risk	17.022	19.652	19.160	19.580	19.047	19.363
Skewness	-1.042	-0.889	-0.908	-0.900	-0.920	-0.904
Kurtosis	5.961	4.589	4.740	4.684	4.849	4.712
Contributions						
Sd Risk ctrb.	0.000	0.088	0.078	0.081	0.071	0.080
Sd Skew ctrb.	0.120	0.000	0.018	0.012	0.029	0.014
Sd Kurt ctrb.	0.100	0.017	0.000	0.009	0.012	0.005
Average of Sd	0.073	0.035	0.032	0.034	0.037	0.033

Table: In-sample characteristics

Summary

- Approach for an extended portfolio risk balancing with respect to higher moments.
- Weighting between (higher) moment risk contributions is possible by setting of λ , and hereby allowing selection of certain kind of risk contributions as special cases.
- Empirical example: By considering higher moment risk contributions, overall dispersion is reduced compared to the ERC-only solution.
- Caveats:
 - Casting of optimization problem not ideal, if constituents have differing signs for skewness.
 - No guarantee that risk contributions of higher moment risks are the same; but at least a solution of least dispersed risk contributions is obtained.

Bibliography I

- Baitinger, E., A. Dragosch, and A. Topalova (2017, Winter). Extending the risk parity approach to higher moments: Is there any value added? *The Journal of Portfolio Managament* 43(2), 24–36.
- Boudt, K., B. Peterson, and C. Croux (2008/09, Winter). Estimation and decomposition of downside risk for portfolios with non-normal returns. *The Journal of Risk* 11(2), 79–103.
- Jondeau, E. and M. Rockinger (2006). Optimal portfolio allocation under higher moments. *European Financial Management* 12(1), 29–55.
- Maillard, S., T. Roncalli, and J. Teïletche (2010). The properties of equally weighted risk contribution portfolios. *The Journal of Portfolio Management* 36(4), 60–70.
- Peterson, B. and P. Carl (2014). *PerformanceAnalytics: Econometric tools for performance and risk analysis.* R package version 1.4.3541.
- Pfaff, B. (2016). Financial Risk Modelling and Portfolio Optimisation with R (2nd ed.). London: John Wiley & Sons, Ltd.

Bibliography II

- Qian, E. (2005). Risk parity portfolios: Efficient portfolios through true diversification. White paper, PanAgora, Bostan, MA.
- Qian, E. (2006). On the financial interpretation of risk contribution: Risk budgets do add up. *Journal of Investment Management* 4(4), 1–11.
- Qian, E. (2011, Spring). Risk parity and diversification. *The Journal of Investing* 20(1), 119–127.
- Roncalli, T. (2013). *Introduction to Risk Parity and Budgeting*. Boca Raton, FL: Chapman and Hall/CRC.
- Wickham, H. (2011). testthat: Get started with testing. The R Journal 3, 5-10.