Interfacing NEOS from R
The R package rneos

Bernhard Pfaff
bernhard_pfaff@fra.invesco.com

Invesco Asset Management Deutschland GmbH, Frankfurt am Main

R in Finance 2011
29–30 April 2011
Chicago
Contents

1 Overview

2 NEOS
 - Overview
 - Available Solvers
 - Interfaces

3 R package rneos
 - Overview
 - Implementation of the API
 - Example

4 Outlook

5 References
Network-Enabled Optimization System (NEOS)
- Overview
- Available Solvers
- Interfaces

The R package rneos
- Overview
- Implementation of the API
- Example

Outlook
http://www.neos-server.org

Server framework for solving optimization problems.

Why using NEOS?
 - Optimization software does not need to be installed locally.
 - Computational burdensome problems are transferred to remote machines.

Help: via Email, FAQ, User Guide (Wiki).
NEOS

Optimization problems (in alphabetical order)

- Bound Constrained Optimization
- Combinatorial Optimization and Integer Programming
- Complementarity Problems
- Global Optimization
- Linear Network Programming
- Linear Programming
- Mixed Integer Linear Programming
- Mixed Integer Nonlinearly Constrained Optimization
- Nonlinearly Constrained Optimization
- Non-differentiable Optimization
- Semidefinite Programming
- Semi-infinite Optimization
- Stochastic Linear Programming
- Second Order Conic Programming
- Unconstrained Optimization
Through Internet: Upload of model and data files
Through Email: Upload of model and data files
AMPL/GAMS via Kestrel
NEOS API (XML-RPC): Available clients
 Python
 Perl
 PHP
 C and C++
 Java
 Ruby
 and now, in R, too

In all four cases, the input is dependent on the chosen solver; but problems casted in AMPL and/or GAMS are most commonly encountered.
R package rneos

Overview

- Implementation of XML-RPC client-side API
- Employs S4 classes and methods (NAMESPACE)
- Dependencies: XMLRPC, RCurl, XML
- Availability:
 - R-Forge: http://r-forge.r-project.org/projects/rneos/
 - CRAN: http://cran.r-project.org/web/packages/rneos/index.html
R package rneos

Package Structure

- **Classes**: NeosComm, NeosXml, NeosJob, NeosAns
- **Functions**:
 - API: NemailHelp(), NgetFinalResults(), NgetFinalResultsNonBlocking(), NgetIntermediateResults(), NgetIntermediateResultsNonBlocking(), NgetJobInfo(), NgetJobStatus(), NgetSolverTemplate(), Nhelp(), NkillJob(), NlistAllSolvers(), NlistCategories(), NlistSolversInCategory(), Nping(), NprintQueue(), NsubmitJob(), Nversion(), Nwelcome()
 - Utility: CreateNeosComm(), CreateXmlString()
- **Methods**: show, update

Nota bene: API functions are prefixed with ’N’, hence Nfoo() designates the API function foo.
$TITLE Stochastic Two-stage program
* TwoStageStochastic.gms: Stochastic Two-stage program.
* Consiglio, Nielsen and Zenios.
* PRACTICAL FINANCIAL OPTIMIZATION: A Library of GAMS Models, Section 6.3.1

SET Assets Available assets
 /Stock, Put_1, Call_1, Put_2, Call_2/;

SET Assets_1(Assets) Assets available up to the end of the first stage
 /Stock, Put_1, Call_1/;

SET Assets_2(Assets) Assets available up to the end of the second stage
 /Stock, Put_2, Call_2/;

SET Scenarios Set of scenarios
 /SS_1 * SS_3/;

ALIAS (Assets, i);
ALIAS (Assets_1, j);
ALIAS (Assets_2, k);
ALIAS (Scenarios, l);

PARAMETER pr(l) Scenario probability
 /SS_1 = 0.25,
 SS_2 = 0.50,
 SS_3 = 0.25/;

PARAMETER P_1(j) Asset prices at the beginning of the first stage
 /Stock = 43,
 Put_1 = 0.81,
 Call_1 = 4.76/;
R package rneos

Workflow: Two-Stage in GMS (cont’d.)

| TABLE P_2(l,i) Asset prices (values) at the beginning of the second stage |
|-----------------|----------------|----------------|----------------|----------------|
| Stock | Put_1 | Call_1 | Put_2 | Call_2 |
| SS_1 | 44 | 1 | 0 | 0.92 | 4.43 |
| SS_2 | 36 | 0 | 4 | 1.40 | 0.85 |
| SS_3 | 47 | 2 | 0 | 3.02 | 6.82 |

| TABLE V(l,k) Asset prices (values) at the end of the second stage |
|-----------------|----------------|
| Stock | Put_2 | Call_2 |
| SS_1 | 48 | 1 | 0 |
| SS_2 | 32 | 0 | 3 |
| SS_3 | 55 | 4 | 0 |

POSITIVE VARIABLES

<table>
<thead>
<tr>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>x(j) First-stage holdings</td>
</tr>
<tr>
<td>y(l,k) Second-stage holdings</td>
</tr>
</tbody>
</table>

VARIABLE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>z Objective function value</td>
<td></td>
</tr>
</tbody>
</table>

EQUATIONS

<table>
<thead>
<tr>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BudgetCon Equation defining the budget contraint</td>
</tr>
<tr>
<td>ObjDef Objective function definition</td>
</tr>
<tr>
<td>MinReturnCon(l) Equation defining the minimum return contraint</td>
</tr>
<tr>
<td>RebalanceCon(l) Equation defining the rebalance contraint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>ObjDef .. z =E= SUM((k,l), pr(l) * V(l,k) * y(l,k));</td>
</tr>
<tr>
<td>BudgetCon .. SUM(j, P_1(j) * x(j)) =L= 10000;</td>
</tr>
<tr>
<td>MinReturnCon(l) .. SUM(k, V(l,k) * y(l,k)) =G= 11500;</td>
</tr>
<tr>
<td>RebalanceCon(l) .. SUM(j, P_2(l,j) * x(j)) =G= SUM(k, P_2(l,k) * y(l,k));</td>
</tr>
</tbody>
</table>

MODEL StochasticTwoStage /ALL/;
SOLVE StochasticTwoStage MAXIMIZING z USING LP;
DISPLAY x.l,z.l;
library(rneos)
NEOS: ping
Nping()
NEOS: listCategories
NlistCategories()
NEOS: listSolversInCategory
NlistSolversInCategory(category = "lp")
NEOS: getSolverTemplate
template <- NgetSolverTemplate(category = "lp", solvername = "MOSEK", inputMethod = "GAMS")
template
modc <- paste(paste(readLines("TwoStageStochastic.gms"), collapse = "\n"), "\n")
cat(modc)
argslist <- list(model = modc, options = "", wantlog = "", comments = "")
xmls <- CreateXmlString(neosxml = template, cdatalist = argslist)
NEOS: printQueue
NprintQueue()
NEOS: submitJob
(test <- NsubmitJob(xmlstring = xmls, user = "rneos", interface = "", id = 0))
NEOS: getJobStatus
NgetJobStatus(obj = test)
NEOS: getFinalResults
NgetFinalResults(obj = test)
Intended package enhancements:

- Offer methods for updating model specifications
- Offer methods for updating data/parameters of optimization problems.
- Implement API for solver maintenance.
The neos server.
IEEE Journal on Computational Science and Engineering 5, 68–75.

The neos server 4.0 administrative guide.
Technical memorandum anl/mcs-tm-250, Mathematics and Computer Science Division, Argonne National Laboratory.

RCurl: General network (HTTP/FTP/...) client interface for R.
R package version 1.4-4.1.

XML: Tools for parsing and generating XML within R and S-Plus.
R package version 3.2-0.1.

XMLRPC: Remote Procedure Call (RPC) via XML in R.
R package version 0.2-0.