# Modelling Financial Risks Fat Tails, Volatility Clustering and Copulae

Bernhard Pfaff bernhard\_pfaff@fra.invesco.com

Invesco Asset Management Deutschland GmbH, Frankfurt am Main

R in Finance 2010 16–17 April 2010 Chicago

# Contents

### Introduction

- 2 Risk Measures
- 3 Extreme Value Theory
- 4 Distributions
- 5 Conditional Volatility Modeling
- 6 Modeling Dependence
- Copula-GARCH
- 8 Summary

#### 9 Literature

# Introduction Overview

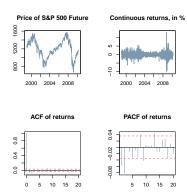
- Financial crisis has turned spotlight on risk management.
- Seconded by stricter regulatory framework.
- In this talk:
  - no debate whether quants have failed or not,
  - but some more recent techniques shall be outlined and elucidated with examples using R.

# Introduction Stylized facts for single return series

- Daily returns though only marginally autocorrelated are usually not i.i.d.
- Volatility does not remain constant over time.
- Absolute or squared returns are strongly autocorrelated.
- Density of a return process is leptokurtic (*i.e.* fat tails).
- Clustering of extreme returns (*i.e.* volatility clustering).

# Introduction Example I: S&P 500 Future

#### Figure: S&P 500 Future – stylized facts (I)



## Introduction Example II: S&P 500 Future

#### Figure: S&P 500 Future – stylized facts (II)

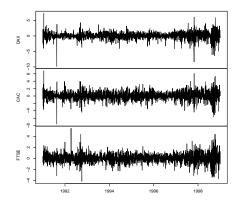


### Introduction Stylized facts for multiple return series

- Simultaneous returns are significantly correlated, whereas cross-correlations are less pronounced.
- Absolute and squared returns exhibit clear correlation.
- Correlations of concurrent returns vary over time.
- Extreme values in a return series often correspond to extreme values in other time series.

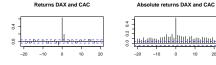
# Introduction Example III: European Equity Markets

Figure: Continuous daily returns - stylized facts (III)



# Introduction Example IV: European Equity Markets

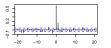
#### Figure: Cross-correlations of returns – stylized facts (IV)



Returns Dax and FTSE



20

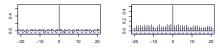






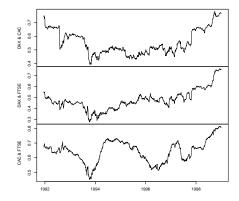
Returns CAC and FTSE





Introduction Example V: European Equity Markets

Figure: Return correlations (250 day moving window) - stylized facts (V)



## Introduction Losses as random variables

- Quantitative risk measures are based on a probability model.
- Wealth, V<sub>t</sub>, is a random variable and is functionally related to time, t, and risk factors, Z<sub>t</sub>.
- Future wealth,  $V_{t+\Delta}$ , is unknown and hence the loss:  $L_{t,t+\Delta} = -(V_{t+\Delta} - V_t).$
- As such the losses are random variables with a probability distribution, called the loss distribution (either conditional or unconditional if time-independent).

#### Introduction Resources in R

Packages for Longitudinal Data:

- timeSeries
- xts
- zoo

Packages for Descriptive Data Analysis:

- fBasics
- fSeries
- fUtilities
- stats

# Risk Measures

Value-at-Risk versus Expected Shortfall

#### Definition of VaR:

$$VaR_{\alpha} = \inf \{ l \in \Re : P(L > l) \le 1 - \alpha \}$$
  
= inf  $\{ l \in \Re : F_L(l) \ge \alpha \}$  (1)

Definition of modified VaR (Cornish-Fisher):

$$\mathsf{mVaR}_{\alpha} = \mathsf{VaR}_{\alpha} + \frac{(q_{\alpha}^2 - 1)S}{6} + \frac{(q_{\alpha}^3 - 3q_{\alpha})K}{24} - \frac{(2q_{\alpha}^3 - 5q_{\alpha})S^2}{36}$$

Definition of ES:

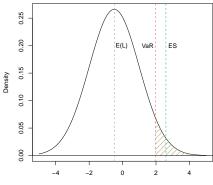
$$\mathsf{ES}_{\alpha} = \frac{1}{1-\alpha} \int_{\alpha}^{1} q_{u}(F_{L}) du$$

$$= \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathsf{VaR}_{u}(L) du$$
(3)

(2)

# Risk Measures Graphical Display

#### Figure: Density function of the losses and risk measures



Losses

### Risk Measures Resources in R

Packages for Risk Measures:

- actuar
- fPortfolio
- PerformanceAnalytics
- QRMlib
- VaR

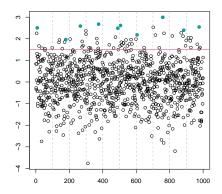
Nota bene: The risk measures are defined and calculated sometimes for the left- and not the right tail of the loss distribution.

#### Extreme Value Theory Block-Maxima versus Peaks-over-Threshold

- Basically, two procedures for extreme value modeling: block-maxima and peaks-over-threshold.
- Threshold, *u*, selection with Mean-Residual-Life plot.
- Distributions/Processes:
  - Generalized Extreme Value Distribution
  - Generalized Pareto Distribution
  - Poisson-Point-Process

### Extreme Value Theory Graphic: Block-Maxima versus PoT

#### Figure: Block-Maxima and Peaks-over-Threshold



# Extreme Value Theory PoT with GPD: Risk Measures

Distribution function of GPD:

$$H(y) = 1 - \left(1 + \frac{\xi y}{\tilde{\sigma}}\right)^{-1/\xi}$$
(4)

with  $\tilde{\sigma} = \sigma + \xi(u - \mu)$  and y : y > 0. VaR for GPD:

$$\mathsf{VaR}_{\alpha} = q_{\alpha}(F) = u + \frac{\tilde{\sigma}}{\xi} \left( \left( \frac{1-\alpha}{\bar{F}(u)} \right)^{-\xi} - 1 \right)$$
(5)

ES for GPD:

$$\mathsf{ES}_{\alpha} = \frac{1}{1-\alpha} \int_{\alpha}^{1} q_{x}(F) dx = \frac{VaR_{\alpha}}{1-\xi} + \frac{\tilde{\sigma} - \xi u}{1-\xi}$$
(6)

#### Extreme Value Theory GPD vs. Normal: Risk Simulation

- Daily returns of the S&P 500 Future
- Sample from 01/05/1999 to 06/02/2008
- Moving window of 1,000 observations
- Comparison of risk measure with the return of the next day.
- Hence, simulation starts at 11/05/2002 with a 1,455 data pairs
- Risk measure: ES with 99% level imply roughly 7 violations to be expected.
- For simplicity, count of data points for GPD kept fixed at twenty largest observations

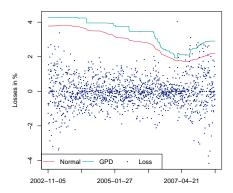
## Extreme Value Theory GPD vs. Normal: Simulation Results I

#### Table: Qualitative and quantitative results for ES

| Model  | Violation | Mean Error | Maximum Error |
|--------|-----------|------------|---------------|
| Normal | 21        | 0.61       | 2.28          |
| GPD    | 7         | 0.59       | 2.11          |

# Extreme Value Theory GPD vs. Normal: Simulation Results II

Figure: Losses and progression of ES



## Extreme Value Theory Resources in R

Packages for Extreme Value Theory:

- fExtremes
- ismev
- POT
- QRMlib

# Distributions for Financial Returns

Introduction

- Concluded from stylized facts: Need for distributions that capture fat tails and asymmetries.
- Class of Generalized Hyperbolic Distrubtions (GHD)
- Commonly encountered sub-classes:
  - Hyperbolic distribution (HYP)
  - Normal Inverse Gaußian (NIG)

# Distributions for Financial Returns Generalized Hyperbolic Distribution (GHD)

#### Density:

$$gh(x; \lambda, \alpha, \beta, \delta, \mu) = a(\lambda, \alpha, \beta, \delta)(\delta^{2} + (x - \mu)^{2})^{(\lambda - \frac{1}{2})/2} \times \mathcal{K}_{\lambda - \frac{1}{2}}(\alpha \sqrt{\delta^{2} + (x - \mu)^{2}}) \exp(\beta(x - \mu)),$$
(7)

with  $a(\lambda, \alpha, \beta, \delta)$  defined as:

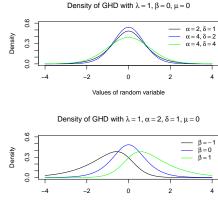
$$a(\lambda, \alpha, \beta, \delta) = \frac{(\alpha^2 - \beta^2)^{\lambda/2}}{\sqrt{2\pi} \alpha^{\lambda - 1/2} \delta^{\lambda} K_{\lambda} (\delta \sqrt{\alpha^2 - \beta^2})}, \qquad (8)$$

Often, GHD is in  $(\zeta, \xi)$  notated (no location and scale):

$$\begin{aligned} \zeta &= \delta \sqrt{\alpha^2 - \beta^2}, \, \rho = \beta / \alpha \\ \xi &= (1 + \zeta)^{-1/2}, \, \chi = \xi / \rho \\ \bar{\alpha} &= \alpha \delta, \, \bar{\beta} = \beta \delta . \end{aligned} \tag{9}$$

# Distributions for Financial Returns Generalized Hyperbolic Distribution (GHD)

Figure: Densities of GHD-class



Values of random variable

# Distributions for Financial Returns Hyperbolic Distribution (HYP)

The HYP is derived from GHD if  $\lambda = 1$ . Density:

$$hyp(x; \alpha, \beta, \delta, \mu) = \frac{\sqrt{\alpha^2 - \beta^2}}{2\delta\alpha K_1(\delta\sqrt{\alpha^2 - \beta^2}} \times exp(-\alpha\sqrt{\delta^2 + (x - \mu)^2} + \beta(x - \mu))$$
(10)

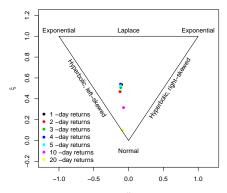
with  $x, \mu \in \mathfrak{R}$ ,  $0 \leq \delta$  and  $|\beta| < \alpha$ . In  $(\xi, \chi)$  notation the triangle relation  $0 \leq |\chi| < \xi < 1$  holds (form triangle).

Distributions

# Distributions for Financial Returns

HYP: Form triangle for Eurex-Bund Future Returns

Figure: Form triangle with fitted HYP-parameters



χ

# Distributions for Financial Returns Normal Inverse Gaußian Distribution (NIG)

The NIG is derived from GHD if  $\lambda = \frac{-1}{2}$ . Density:

$$\operatorname{nig}(x; \alpha, \beta, \delta, \mu) = \frac{\alpha \delta}{\pi} \exp(\delta \sqrt{\alpha^2 - \beta^2} + \beta(x - \mu)) \frac{\kappa_1(\alpha \sqrt{\delta^2 + (x - \mu)^2})}{\sqrt{\delta^2 + (x - \mu)^2}}$$
(11)

with parameter ranges:  $x, \mu \in \mathfrak{R}$ ,  $0 \leq \delta$  and  $0 \leq |\beta| \leq \alpha$ .

# Distributions for Financial Returns Resources in R

Packages for Generalized Hyperbolic Distribution:

- actuar
- fBasics
- ghyp
- HyperbolicDist
- QRMlib
- Runuran
- SkewHyperbolic

# Conditional Volatility Modeling

- Losses are now no longer assumed to be i.i.d.
- GARCH-model class are suited for capturing fat tails and volatility clustering (see stylized facts above).
- Volatility can directly be forecasted; no need for square-root-of-time rule, for instance.

# Conditional Volatility Modeling GARCH: Example I

- ESCB reference rate JPY/EUR (log-returns) from December 21, 1999 until October 10, 2008.
- Moving window of 250 obeservations.
- VaR for the 95% and 99% confidence level.
- Models: Normal distribution versus GARCH(1, 1) with Student's t innovations.
- Comparison of risk measure with next day's returns.

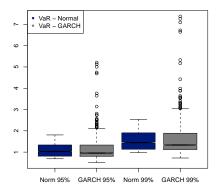
# Conditional Volatility Modeling GARCH: Example II

#### Table: VaR Results

| Statistic    | VaR 95% |       | VaR    | VaR 99% |  |
|--------------|---------|-------|--------|---------|--|
|              | Normal  | GARCH | Normal | GARCH   |  |
| minimum      | 0.687   | 0.518 | 0.977  | 0.724   |  |
| 1st quantile | 0.811   | 0.802 | 1.134  | 1.119   |  |
| median       | 1.028   | 0.955 | 1.446  | 1.334   |  |
| average      | 1.104   | 1.099 | 1.557  | 1.545   |  |
| 3rd quantile | 1.336   | 1.333 | 1.905  | 1.887   |  |
| maximum      | 1.807   | 5.207 | 2.534  | 7.375   |  |

# Conditional Volatility Modeling GARCH: Example III

Figure: Box Plots of VaR



# Conditional Volatility Modeling Resources in R

- bayesGARCH
- ccgarch
- fGarch
- gogarch
- rgarch (R-Forge)
- tseries

# Modeling Dependence Overview

- Copulae are a concept to model dependence between random variables.
- Copulae are distribution functions.
- Copulae concept: Bottom-up approach to multivariate model-building.
- Applications: Measure dependence, tail dependence, Monte Carlo studies.

# Modeling Dependence

In prose: A *d*-dimensional copula is a distribution function on  $[0,1]^d$  with standard uniform marginal distributions. Hence, the copula *C* is a mapping of the form  $C : [0,1]^d \rightarrow [0,1]$ , *i.e.*, a mapping of the unit hyper cube into the unit interval.

## Modeling Dependence Sklar's Theorem

Let F be a joint distribution function with margins  $F_1, \ldots, F_d$ . Then there exists a copula  $C : [0,1]^d \to [0,1]$  such that for all  $x_1, \ldots, x_d$  in  $\mathbb{R} = [-\infty, \infty]$ ,

$$F(x_1,...,x_d) = C(F_1(x_1),...,F_d(x_d))$$
 (12)

If the margins are continuous, then *C* is unique; otherwise *C* is uniquely determined on  $RanF_1 \times RanF_2 \times \cdots \times RanF_d$ , where  $RanF_i = F_i(\bar{\mathbb{R}})$  denotes the range of  $F_i$ . Conversely, if *C* is a copula and  $F_1, \ldots, F_d$  are univariate distribution functions, then the function *F* defined in (12) is a joint distribution function with margins  $F_1, \ldots, F_d$ .

Fréchet-Hoeffding bounds

If C is any d-copula, then for every **u** in  $[0, 1]^d$ ,

$$W^d(\mathbf{u}) \le C(\mathbf{u}) \le M^d(\mathbf{u})$$
 , (13)

whereby

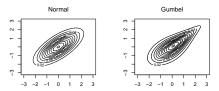
$$W^{d}(\mathbf{u}) = \max(\sum_{i=1}^{d} u_{i} + 1 - d, 0)$$
 (14)  
 $M^{d}(\mathbf{u}) = \min(u_{1}, \dots, u_{d})$  (15)

The function  $M^d(\mathbf{u})$  is a *d*-copula for  $d \ge 2$ , whereas the function  $W^d(\mathbf{u})$  is not a copula for any  $d \ge 3$ . Please note, that these bounds hold for any multivariate df *F*.

### Modeling Dependence Categories of copulas

- *Fundamental copulas*: These copulae represent important special dependence structures. Examples are: the independence copula, the comonotonicity copula (Fréchet-Hoeffding upper bound, perfectly positively dependent), the countermonotonicity copula (Fréchet-Hoeffding lower bound, perfectly negatively dependent)
- *Implicit copulas*: These copulae are extracted from well-known multivariate distributions using Sklar's Theorem. Ordinarily, these copulae do not possess simple closed-form expressions. Examples are: Gauß copula, t copula.
- *Explicit copulas*: These copulae have simple closed-form expressions. Examples are: Gumbel copula, Clayton copula.

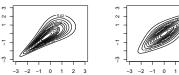
## Modeling Dependence Copula: Example







2 3



Confusion about Correlations

- "Among nine big economies, stock market correlations have averaged around 0.5 since the 1960s. In other words, for every 1% rise (or fall) in, say, American share prices, share prices in the other markets will typically rise (fall) by 0.5%." (The Economist, 8th November 1997)
- "A correlation of 0.5 does not indicate that a return from stock-market A will be 50% of stockmarket B's return, or vice-versa ... A correlation of 0.5 shows that 50% of the time the return of stockmarket A will be positively correlated with the return of stock market B, and 50% of the time it will not." (The Economist (letter), 22nd November 1997)

## Modeling Dependence Correlation pitfalls I

- The use of correlation coefficients as a measure of dependence and risk allocation between risky assets is widespread.
- However, applying correlation coefficients blindly to multivariate data sets might be misleading.
- Working with correlation coefficients is unproblematic in the case of jointly normally distributed series. (this holds true for all elliptical distributions).

## Modeling Dependence Correlation pitfalls II

Fallacy 1: Marginal distributions and correlation determine the joint distribution.

- Only true, if assets are following an elliptical distribution.
- If the series are non-elliptically distributed, then there are infinitely many distributions that will fit the data.
- Correlation coefficients do not contain information about tail-dependencies between risky assets.

## Modeling Dependence Correlation pitfalls III

Fallacy 2: Given marginal distributions  $F_1$  and  $F_2$  for  $X_1$  and  $X_2$ , all linear correlations between -1 and 1 can be attained through suitable specification of the joint distribution F.

- Only true, if assets are following an elliptical distribution.
- In general, the attainable correlations depend on F<sub>1</sub> and F<sub>2</sub> and form a closed interval [ρ<sub>min</sub>, ρ<sub>max</sub>] containing zero that is a subset of [-1, 1].
- For instance, given a bivariate log-normal distribution the valid range of ρ is [-0.090, 0.666].
- Hence, a low correlation does not point to a low dependence between two random variables!

Correlation pitfalls: Summary

- Correlation is simply a scalar measure of dependency; it cannot tell us everything we would like to know about the dependence structure of risks.
- Possible values of correlation depend on the marginal distribution of the risks. All values between -1 and 1 are not necessarily attainable.
- Perfectly positively dependent risks do not necessarily have a correlation of 1; perfectly negatively dependent risks do not necessarily have a correlation of -1.
- 4 A correlation of zero does not indicate independence of risks.
- Correlation is not invariant under transformations of the risks. For example, log(X) and log(Y) generally do not have the same correlation as X and Y.
- Orrelation is only defined when the variances of the risks are finite. It is not an appropriate dependence measure for very heavy-tailed risks where variances appear infinite.

## Modeling Dependence Fitting Copulas to data

- Methods-of-Moments using Rank Correlation (Spearman and Kendall)
- Forming Pseudo-sample from the copula (parametric and non-parametric estimation and/or EVT for the tails).
- Maximum-Likelihood Estimation.

Rank correlation coefficients

### • Spearman's rank correlation coefficient:

$$\frac{12}{n(n^2-1)}\sum_{t=1}^n (rank(X_{t,i}) - \frac{1}{2}(n+1))(rankX_{t,j}) - \frac{1}{2}(n+1))$$

• Kendall's tau:

$$\binom{n}{2}^{-1} \sum_{1 \le t < s \le n} sign((X_{t,i} - X_{s,i})(X_{t,j} - X_{s,j}))$$

## Modeling Dependence Coefficients of Tail Dependence I

- Coefficients of tail dependence are measures of pairwise dependence that depend only on the copula of a pair of rvs X<sub>1</sub> and X<sub>2</sub>.
- These coefficients provide a measure of extremal dependence, *i.e.*, the dependence in tails of the distribution.
- Here, the measures are defined in terms of limiting conditional probabilities of quantile exceedances.

### Modeling Dependence Coefficients of Tail Dependence II

#### Definition

Let  $X_1$  and  $X_2$  be rvs with dfs  $F_1$  and  $F_2$ . The coefficient of upper dependence of  $X_1$  and  $X_2$  is:

$$\lambda_u := \lambda_u(X_1, X_2) = \lim_{q \to 1^-} P(X_2 > F_2^{-1}(q) | X_1 > F_1^{-1}(q))$$

provided a limit  $\lambda_u \in [0, 1]$  exists. If  $\lambda_u \in [0, 1]$ , then  $X_1$  and  $X_2$  are said to show upper tail dependence or extremal dependence in the upper tail; if  $\lambda_u = 0$ , they are asymptotically independent in the upper tail. Analogously, the coefficient of lower tail dependence is:

$$\lambda_I := \lambda_I(X_1, X_2) = \lim_{q \to 0^+} P(X_2 \le F_2^{-1}(q) | X_1 \le F_1^{-1}(q)) \quad ,$$

provided a limit  $\lambda_I \in [0, 1]$  exists.

Coefficients of Tail Dependence III

- Upper tail dependence for the Gumbel copula:  $\lambda_u = 2 2^{1/\theta}$  for  $\theta > 1$ .
- Lower tail dependence for the Clayton copula:  $\lambda_I = 2^{-1/\theta}$  for  $\theta > 0$ .
- Because of its symmetry the lower and upper tail dependence coefficients are equal for the Gauß and t copulae. It can be shown that the Gauß copula is asymptotically independent in both tails. For the t copula the coefficient of tail dependence is defined as:

$$\lambda = 2t_{
u+1}\left(-\sqrt{rac{(
u+1)(1-
ho)}{1+
ho}}
ight) \quad ,$$

provided that  $\rho > -1$ .

## Copula-GARCH

Introduction

- Combination of GARCH-models for the marginal distributions and capturing the dependencies between these with a copula.
- GARCH specifications can be different for risk factors.
- Fat tails and/or asymmetries are explicitly taken into account.
- Risk measures are calculated by Monte-Carlo simulations.

### Copula-GARCH Step-by-step guide

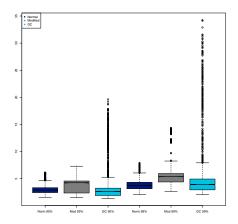
- Specify and estimate GARCH models.
- 2 Retrieve standardised residuals.
- Onvert to pseudo-uniform variables (either according to the distribution assumption or empirically).
- Estimate copula.
- Simulate *N* data sets from copula by Monte-Carlo.
- **o** Calculate the quantiles and the simulated losses.
- Obtain the desired risk measure.



- Equally weighted portfolio of five US companies: Bank of America, Citigroup, General Motors, Procter & Gamble and United Technologies.
- Sample period from 30 December 1994 to 30 April 2009
- Rolling window of 1,000 obersvations, hence simulation starts at the 3rd November 1998 and contains 2738 data sets.
- Comparison of ES with the subsequent portfolio return.
- Models: Normaldistribution vs. GARCH(1, 1) with Student's t innovations and a Student's t copula.

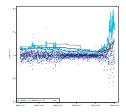
## Copula-GARCH Copula-GARCH: Box Plots

#### Figure: Box Plots of ES

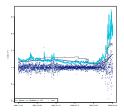


## Copula-GARCH Copula-GARCH: Time Series Plots

### Figure: Losses and ES 95%

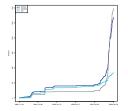


#### Figure: Losses and ES 99%

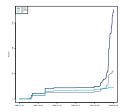


## Copula-GARCH Copula-GARCH: Cumulated non-anticipated losses

#### Figure: Draw Downs 95%



#### Figure: Draw Downs 99%



## Summary

- Many packages are already available that are focused on risk modelling.
- Unfortunately, risk measures are not defined consistently.
- Lack of out-of-the-box methods for the more elaborated risk models.

#### Literature

### Literature

- Cambell, J.Y., Lo, A.W. and A.C. MacKinlay, The Econometrics of Financial Markets, 1997, Princeton, NJ: Princeton University Press.
- Coles, S.G., An Introduction to Statistical Modeling of Extreme Values, 2001, New York, NY: Springer.
- Joe, H., Multivariate Models and Dependence Concepts, 1997, London: Chapman & Hall.
- Jorion, P., Value at Risk: The New Benchmark for Measuring Financial Risk, 2nd edition, 2001, New York, NY: McGraw-Hill.
- Leadbetter, M.R., Lindgren, G. and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, 1983, New York, NY: Springer.
- McNeil, A.J., Frey, R. and P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, 2005, Princeton, NJ: Princeton University Press.
- Nelsen, R.B., An Introduction to Copulas, 1999, New York, NY: Springer.
- Pfaff, B., Modelling Financial Risks: Fat Tails, Volatility Clustering and Copulae, 2010, Frankfurt am Main: Frankfurter Allgemeine Buch.