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Nonstationary Time Series

In this chapter, models for nonstationary time series
are introduced. Before the characteristics of unit
processes are presented, the differences between trend-
and difference-stationary models are outlined. In the
last section, long memory processes, i.e., fractionally
integrated processes, are presented as a bridge between
stationary and unit root processes.

2.1 Trend- versus Difference-Stationary Series

In the last chapter, a model class for stationary time series has been intro-
duced. For instance, it has been shown that a stable autoregressive (AR)(p)
can be inverted to an infinite moving average (MA)–process with a constant
mean. However, most macroeconomic time series seem not to adhere to such
a data-generating process (see Figure 1.1). In this section, we will for exam-
plary reasons consider a more encompassing data-generated process that was
presented by Campbell and Perron [9].

Now, it is assumed that a time series {yt} is a realization of a deterministic
trend and a stochastic component:

yt = TDt + zt , (2.1)

where TDt assigns a deterministic trend: TDt = β1+β2t and zt represents the
stochastic component: φ(L)zt = θ(L)εt with εt ∼ i.i.d, i.e., an autoregressive-
moving average (ARMA)(p, q)–process. We distinguish two cases. First, if all
roots of the autoregressive polynomial lie outside the unit circle (see Equation
1.14), then {yt} is stationary around a deterministic trend. In this instance,
one could remove the trend from the original series {yt} and fit an ARMA(p,
q) to the residuals.1

This trend-stationary model is also termed an integrated model of order
zero or more compactly, the I(0)–model. Second, assume now that one root of
the autoregressive polynomial lies on the unit circle and the remaining ones
are all outside. Here, Δzt = (1 − L)zt is stationary around a constant mean.

1 A deterministic trend is most easily subtracted from a series, i.e., a vec-
tor y, by issuing the following command: detrended <- residuals(lm(y ∼
seq(along=y))).
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The series {yt} is difference-stationary because one has to apply the first dif-
ference filter with respect to time to obtain a stationary process. Likewise
to the trend-stationary model this difference stationary model is referred to
as an integrated model of order one or shortly the I(1)–model. The meaning
of “intergrated” should now be obvious: Once the series has been differenced
to obtain a stationary process, it must be integrated once, i.e, the reversal,
to achieve the original series, hence the I(1)–model. An ARMA(p, q)–model
could then be fitted to the differenced series. This model class is termed the
autoregressive integrated moving average (ARIMA)(p, d, q), where d refers
to the order of integration, i.e., how many times the original series must be
differenced until a stationary one is obtained. It should be noted that unit
roots, i.e., roots of the autoregressive polynomial that lie on the unit circle,
are solely referring to the stochastic component in Equation 2.1.

The distinction between a trend- and a difference-stationary processes is
examplified by the following two processes:

yt = yt−1 + μ = y0 + μt , (2.2a)

yt = yt−1 + εt = y0 +
t∑

s=1

εs , (2.2b)

where μ is a fixed constant and εt is a white noise process. In Equation 2.2a,
{yt} is represented by a deterministic trend, whereas in Equation 2.2b, the
series is explained by its cumulated shocks, i.e., a stochastic trend.

So far, the stochastic component zt has been modeled as an ARIMA(p,
d, q)–model. To foster the understanding of unit roots, we will decompose
the stochastic component into a cyclical component ct and a stochastic trend
TSt. It is assumed that the cyclical component is a mean-stationary pro-
cess, whereas all random shocks are captured by the stochastic component.
Now, the data-generating process for {yt} is decomposed into a deterministic
trend, a stochastic trend, and a cyclcical component. For the trend stationary
model, the stochastic trend is zero and the cyclical component is equal to the
ARMA(p, q)–model: φ(L)zt = θ(l)εt. In the case of a difference-stationary
model, the autoregressive polynomial contains a unit root that can be fac-
tored out: φ(L) = (1 − L)φ∗(L), whereby the roots of the polynomial φ∗(L)
are outside the unit circle. It is then possible to express Δzt as a moving
average process (for comparison, see Equations 1.28a and 1.28b):

φ∗(L)Δzt = θ(L)εt , (2.3a)
Δzt = φ∗(L)θ(L)εt , (2.3b)
Δzt = ψ(L)εt . (2.3c)

Beveridge and Nelson have shown that Equation 2.3c can be transformed to
(Beveridge–Nelson decomposition)
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zt = TSt + ct = ψ(1)St + ψ∗(L)εt , (2.4)

where the sum of the moving average coefficients is denoted by ψ(1), St is
the sum of the past and present random shocks:

∑t
s=1 εs, and the polynomial

ψ∗(L) is equal to (1 − L)−1[ψ(L) − ψ(1)] (see Beveridge and Nelson [7]).

The time series {yt} is now explained by a trend function that consists of a
deterministic trend as well as a stochastic component, namely TST = ψ(1)St.
The latter affects the absolute term in each period. Because the stochastic
trend is defined as the sum of the moving average coefficients of Δzt, it can
be interpreted as the long-run impact of a shock to the level of zt. In contrast,
the cyclical component, ct = ψ∗(L)εt exerts no long-run impact on the level of
zt. Now, we can distinguish the following four cases: (1) ψ(1) > 1: The long-
run impact of the shocks is greater than the intermediate ones, and hence the
series is characterized by an explosive path; (2) ψ(1) < 1: The impact of the
shocks diminishes as time passes by, (3) ψ(1) = 0: The time series {yt} is a
trend-stationary process, and (4) ψ(1) = 1: The data-generated process is a
random walk. The fourth case will be a subject in the next section.

2.2 Unit Root Processes

As stated in the last section, if the sum of the moving average coefficients,
ψ(1) equals one, a random walk process results. This data-generating process
has attracted much interest in the empirical literature, in particular in the
field of financial econometrics. Hence, a random walk is not only a prototype
for a unit root process, but it is implied by economic and financial hypotheses
as well (i.e., the efficient market hypothesis). Therefore, we will begin this
section by analyzing random walk processes in more detail before statistical
tests and strategies for detecting unit roots are presented.

A pure random walk without a drift is defined as

yt = yt−1 + εt = y0 +
t∑

s=1

εt , (2.5)

where {εt} is an i.i.d. process, i.e., white noise. For the sake of simplicity,
assume that the expected value of y0 is zero and that the white noise process
{εt} is independent of y0. Then it is trivial to show that (1) E[yt] = 0 and
var(yt) = tσ2. Clearly, a random walk is a nonstationary time series process
because its variance grows with time. Second, the best forecast of random walk
is its value one period earlier, i.e., Δyt = εt. Incidentally, it should be noted
that the i.i.d. assumption for the error process {εt} is important with respect
to the conclusions drawn above. Suppose that the data-generated process for
{yt} is
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yt = yt−1 + εt , εt = ρεt−1 + ξt , (2.6)

where |ρ| < 1 and ξt is a white noise process instead. Then, {yt} is not a ran-
dom walk process, but it still has a unit root and is a first-order nonstationary
process.

Let us now consider the case of a random walk with drift:

yt = μ+ yt−1 + εt = y0 + μt+
t∑

s=1

εt , (2.7)

where, likewise to the pure random walk process, {εt} is white noise. For
μ �= 0, {yt} contains a deterministic trend with drift parameter μ. The sign of
this drift parameter causes the series to wander upward if positive and down-
ward if negative, whereas the size of the absolute value affects the steepness.

In Rcode example 2.1, three time series have been generated. For a better
comparability between those, all series have been calculated with the same
sequence of random numbers drawn from a standard normal distribution.
First, a pure random walk has been generated by calculating the cumulated
sum of 500 random numbers stored in the vector object e. A deterministic
trend has been set with the short form of the seq() function, i.e., the colon
operator. As a second time series model, a random walk with drift can now be
easily created acording to Equation 2.7. Last, the deterministic trend has been
overlayed with the stationary series of normally distributed errors. All three
series are plotted in Figure 2.1. By ocular econometrics, it should be evident
that the statistical discrimination between a deterministic trend contaminated
with noise and a random walk with drift is not easy. Likewise, it is difficult
to distinguish between a random walk process and a stable AR(1)–process in
which the autoregressive coefficient is close to unity. The latter two time series
processes are displayed in Exhibit 2.2.
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Rcode 2.1 Stochastic and deterministic trends

1s e t . s eed (123456)
2e <− rnorm (500)
3# pure random walk
4rw . nd <− cumsum( e )
5# tr end
6t r d <− 1 : 500
7# random walk wi th d r i f t
8rw .wd <− 0 . 5 ∗ t r d + cumsum( e )
9# d e t e r m i n i s t i c t r end and no i s e
10dt <− e + 0.5 ∗ t r d
11# p l o t t i n g
12par (mar=rep (5 , 4 ) )
13p l o t . t s ( dt , l t y =1 , y l a b=’ ’ , x l a b=’ ’ )
14l i n e s ( rw .wd , l t y =2)
15par ( new=T)
16p l o t . t s ( rw . nd , l t y =3 , axe s=FALSE)
17a x i s ( 4 , p r e t t y ( range ( rw . nd ) ) )
18l i n e s ( rw . nd , l t y =3)
19l e g end ( 1 0 , 1 8 . 7 , l e g end=c ( ’ det . t r end + no i s e ( l s ) ’ , ’ rw

d r i f t ( l s ) ’ , ’ rw ( r s ) ’ ) , l t y=c ( 1 , 2 , 3 ) )

Before a testing procedure for the underlying data-generating process is
outlined, we will introduce a formal defintion of integrated series and briefly
touch on the concept of seasonal integration, which will be presented in more
detail in Section 5.2.

In the seminal paper by Engle and Granger [26] an integrated series is defined
as follows.

Definition 2.1. A series with no deterministic component that has a station-
ary, invertible, ARMA representation after differencing d times is said to be
integrated of order d, which is denoted as xt ∼ I(d).

That is, a stationary series is simply written as an I(0)–process, whereas a
random walk is said to follow an I(1)–process, because it has to be differenced
once, before stationarity is achieved. It should be noted at this point that
some macroeconomic series are already differenced. For example, the real net
investment in an economy is the difference of its capital stock. If investment
is an I(1)–process, then the capital stock must behave like an I(2)–process.
Similarily, if the inflation rate, measured as the difference of the logarithmic
price index, is integrated of order one, then the price index follows an I(2)–
process. Therefore, stationarity of yt ∼ I(2) is achieved by taking the first
differences of the first differences:

ΔΔyt = Δ(yt−yt−1) = (yt−yt−1)− (yt−1−yt−2) = yt−2yt−1 +yt−2 . (2.8)
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Fig. 2.1. Time series plot of deterministic and stochastic trends

If a series is already stationary I(0), then no further differencing is necessary.
When a series {yt} is a linear combination of x1t ∼ I(0) and x2t ∼ I(1),
then {yt} will be an I(1)–process. Likewise, a linear transformation of an
I(d)–process conserves the order of integration: yt ∼ I(d), so it will be
α+ βyt ∼ I(d), where α and β are constants.

By now, we have only considered data-generating processes in which the unit
root occurs for its own values lagged by one period. One can generalize these
processes to

yt = yt−s + εt , (2.9)

where s ≥ 1. If s equals a seasonal frequency of the series, then {yt} is de-
termined by its prior seasonal values plus noise. Likewise to the concept of a
stochastic trend, this data-generating process is termed stochastic seasonal-
ity. In practice, seasonality is often accounted for by the inclusion of seasonal
dummy variables or the use of seasonally adjusted data. However, there might
be instances where the allowance of a seasonal component to drift over time
is necessary. Analogously to the presentation of the unit root processes at the
zero frequency, we can define the lag operator for seasonal unit roots as
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Fig. 2.2. Plot of a random walk and a stable AR(1)–process, φ = 0.99

Δs = (1 − Ls) (2.10a)

= (1 − L)(1 + L+ L2 + . . .+ Ls−1) = ΔS(L) . (2.10b)

In Equation 2.10b the unit root at the zero frequency has been factored out.
Hence, a seasonally integrated series can be represented as the product of the
first difference operator and the moving-average seasonal filter S(L). Accord-
ing to Engle et al. [27] a seasonally integrated series can be defined as follows.

Definition 2.2. A variable {yt} is said to be seasonally integrated of orders
d and D, which are denoted as SI(d, D), if ΔdS(L)Dyt is stationary.

Therefore, if a quarterly series Δ4yt is stationary, then {yt} is SI(1, 1). Testing
for seasonal unit roots is similar although a bit more complicated to testing
for unit roots at the zero freqeuncy, which will be presented in the next para-
graphs. The probably simplest test has been proposed by Hasza and Fuller
[40], Dickey et al. [18], and a modification of it by Osborn et al. [71]. How-
ever, more complicated testing procedure that allows for cyclical movements
at different frequencies has been introduced into the literature by Hylleberg
et al. [49]. In R, seasonal unit root tests are implemented in the CRAN–package
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uroot.

Recall the decomposition of a time series {yt} as in Equation 2.1. Now we
want to investigate if the process {zt} does contain a unit root:

zt = yt − TDt . (2.11)

Hence, a deterministic trend is removed from the original series first and the
residuals are tested for a unit root. Dickey and Fuller [16] proposed the fol-
lowing test regression that is delineated from an assumed AR(1)–process of
{zt} (henceforth: DF–test):

zt = θzt−1 + εt , (2.12a)
zt − zt−1 = θzt−1 − zt−1 + εt , (2.12b)

Δzt = (θ − 1)zt−1 + εt , (2.12c)
Δzt = πzt−1 + εt . (2.12d)

Under the null hypothesis of a unit root π = 0, which is equivalent to θ = 1
and the alternative is a trend stationary process, i.e., π < 0 or θ < 1. Please
note, that an explosive path for {zt}, π > 0, is excluded. Equation 2.12d can
be estimated by the ordinary least-squares method. The significance of π can
be tested by a usual Student t ratio. However, this test statistic does not
have the familiar Student t distribution. Under the null hypothesis, an I(0)–
variable is regressed on an I(1)–variable in Equation 2.12d. In this case, the
limiting distribution of the Student t ratio is not normal. Fortunately, critical
values have been calculated by simulation and are publicized in Fuller [32],
Dickey and Fuller [17], and MacKinnon [62], for instance.

So far we have only stated that a deterministic trend is removed before
testing for a unit root. In reality neither the existence nor the form of the
deterministic component is known a priori. Hence, we have to choose from the
set of deterministic variables DVt the one that best suites the data-generating
process. The most obvious candidates as DVt are simply a constant, a linear
trend, or higher polynomials in the trend function, i.e., square or cubic. In
practice, only the first two are considered. The aim of characterizing the noise-
function {zt} is still the same, but now we have to take the various DVt as
deterministic regressors DRt into account too. The above-described two-step
procedure (Equations 2.11 and 2.12) can be carried out in one equation:

Δyt = τ ′DRt + πyt−1 + ut , (2.13)

where τ is the coefficient vector of the deterministic part and {ut} assigns
an error term. For the one-step procedure, a difficulty now arises, because
under the validity of the null hypothesis, the deterministic trend coefficient
τ is null, whereas under the alternative it is not. Hence, the distribution of
the Student t ratio of π depends now on these nuisance parameters too. The
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reason for this is that the true deterministic component is unknown and must
be estimated. Critical values for different deterministic components can be
found in the above-cited literature as well as in Ouliaris et al. [72].

A weakness of the original DF–test is that it does not take a possible serial
correlation of the error process {ut} into account. Dickey and Fuller [17] have
suggested replacing the AR(1)–process for {zt} in Equation 2.12a with an
ARMA(p, q)–process, φ(L)zt = θ(L)εt. If the noise component is an AR(p)–
process, it can be shown that the following test regression:

Δyt = τ ′DRt + πyt−1 +
k∑

j=1

γjΔyt−j + ut with k = p− 1 (2.14)

ensures that the serial correlation in the error is removed. This test regression
is called the augmented Dickey–Fuller test, henceforth, the ADF–test. Several
methods for selecting k have been suggested in the literature. The most promi-
nent one is the general-to-specific method. Here, one starts with an a priori
choosen upper bound kmax and then drops the last lagged regressor if it is
insignificant. In this case, the Student t distribution is applicable. You repeat
these steps until the last lagged regressors is significant, otherwise you drop
it each time the equation is reestimated. If no endogenously lagged regressor
turns out to be significant, you choose k = 0, hence the DF–test results. This
procedure will asymptotically yield the correct lag order or greater to the true
order with probability one. Other methods for selecting an appropriate order
k are based on information criteria, like Akaike (AIC) [1] or Schwarz (SC) [90].
Alternatively, the lag order can be determined by testing the residuals for a
lack of serial correlation as can be tested via the Ljung–Box Portmanteau test
(LB) or a Lagrange multiplier test (LM). In general, the SC, LB, or LM tests
coincide with respect to selecting an optimal lag length k. Whereas the AIC
and the general-to-specific method will mostly imply a lag length at least as
large as the one by the former methods.

Once the lag order k is empirically determined, the next steps involve a test-
ing procedure as graphically illustrated in Figure 2.3. First, the encompassing
ADF–test equation:

Δyt = β1 + β2t+ πyt−1 +
k∑

j=1

γjΔyt−j + ut (2.15)

is estimated. Dependent on this result are the further steps to be taken, until
one can conclude that the series is

i) stationary around a zero mean,
ii) stationary around a nonzero mean,
iii) stationary around a linear trend,
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iv) contains a unit root with zero drift,
v) contains a unit root with nonzero drift.

To be more concrete, the testing strategy starts by testing if π = 0 using
the t statistic ττ . This statistic is not standard Student t distributed, but
critical values can be found in Fuller [32]. If this test is rejected, then there is
no need to proceed further. The testing sequence is continued by an F type
test Φ3 with H0 : β2 = π = 0 using the critical values tabulated in Dickey
and Fuller [17]. If it is significant, then test again for a unit root using the
standardized normal. Otherwise if the hypothesis β2 = 0 cannot be rejected,
reestimate the Equation 2.15 but without a trend. The corresponding t and F
statistics for testing if H0 : π = 0 and H0 : β1 = π = 0 are denoted by τμ(τ)
and Φ1. Again, the critical values for these test statistics are provided in the
above-cited literature. If the null hypothesis of τμ(τ) is rejected, then there
is again no need to go further. If it is not, then employ the F statistic Φ1 for
testing of the presence of a constant and a unit root.

However, the testing procedure does not end here. If the hypothesis π = 0
cannot be rejected in Equation 2.15, then the series might be integrated of
order higher than zero. Therefore, one has to test whether the series is I(1) or
possibly I(2) or even integrated to a higher degree. A natural approach would
be to apply the DF– or ADF–test to

ΔΔyt = πΔyt−1 + ut . (2.16)

If the null hypothesis π = 0 is rejected, then Δyt ∼ I(0) and yt ∼ I(1), oth-
erwise one must test subsequently whether yt ∼ I(2). This testing procedure
is termed bottom-up. However, two possibilities arise by using this bottom-up
approach. First, the series cannot be transformed to stationarity regardless
of how many times the difference operator is applied. Second, the danger of
overdifferencing exists; that is, one falsly concludes an integration order higher
than the true one. This can be detected by high positive values of the DF–test
statistic. This risk can be circumvented by a general-to-specific testing strat-
egy proposed by Dickey and Pantula [19]. They recommend by starting from
the highest sensible order of integration, say I(2), and then test downward to
the stationary case.

So far, we have only considered the DF– and the ADF–test as a means
to detect the presence of unit roots. Since the early 1980s numerous other
statistical tests have been proposed in the literature. The most important and
widely used ones will be presented in the second part of the book.
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2.3 Long Memory Processes

So far, we have considered data-generating processes that are either stationary
or integrated of an integer order higher than zero (for example, the random
walk as a prototype of an I(1) series). Hence, it is a knife-edge decision if a
series is I(1) or I(0) or is integrated at an even higher integer order. Further-
more, it has been shown that for a yt ∼ I(1) series, the ACF declines linearily,
and for a stationary yt ∼ I(0) process, the ACF declines exponentially so that
observations separated by a long time span may be regarded as independent.
However, some empirically observed time series do not share neither one of
these characteristics even though they are transformed to stationarity by suit-
able differencing. These time series still exhibit a dependency between distant
observations. Their occurences are encountered in many disciplines such as
finance, geophysical sciences, hydrology, and marcoeconomics. Although hav-
ing argued heuristically, Granger [34] provides a theoretical justification for
these processes. To cope with such time series, our current model class has to
be enlarged by so-called fractionally integrated processes, i.e., long memory
processes. The literature about fractionally integrated processes has grown
steadily since its detection in the early 1950s of the last century. Baillie [4]
cites in his survey about these processes 138 articles and 38 background ref-
erences.

Before the more encompassing class of autoregressive fractionally integrated
moving average processes (henceforth: ARFIMA) is introduced, it is notewor-
thy to define a long memory process and the filter for transforming fractionally
integrated series.
First, we draw on the definition of McLeod and Hipel [67].

Definition 2.3. A process is said to posses a long memory if

lim
T→∞

T∑
j=−T

|ρj | (2.17)

is nonfinite.

This is equivalent by stating that the spectral density of a long memory process
becomes unbounded at low frequencies.2

Second, recall that an integrated process of order d can be written as
2 For an exposition of frequency domain analysis, the reader is referred to Judge,

G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T. Lee, The Theory and
Practice of Econometrics, John Wiley and Sons, New York, 2nd edition, 1985,
and Bloomfield, P., Fourier Analysis of Time Series: An Introduction, John Wiley
and Sons, New York, 2nd edition, 2000. The spectral density of a series can be
estimated by the function spectrum() in R. For more information on how this
is implemented, the reader is referred to Venables and Ripley [98] as well as the
function’s documentation.
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(1 − L)dyt = ψ(L)εt , (2.18)

where absolute or square summabilty of ψj is given; i.e.,
∑∞

j=0 |ψj | < ∞ or∑∞
j=0 ψ

2
j <∞. Premultiplying Equation 2.18 by (1 − L)−d yields

yt = (1 − L)−dψ(L)εt . (2.19)

Now, define the function f(z) = (1− z)−d for the scalar z. The derivatives of
this function are

df
dz

= d(1 − z)−d−1 , (2.20a)

d2f

dz2
= (d+ 1)d(1 − z)−d−2 , (2.20b)

...

djf

dzj
= (d+ j − 1)(d+ j − 2) · · · (d+ 1)d(1 − z)−d−j . (2.20c)

Therefore, the fractional difference operator for d ∈ (− 1
2 ,

1
2 ] can be expressed

as

(1 − L)d =
∞∑

j=0

(
d

j

)
(−1)jLj , (2.21)

by making use of a power series expansion around z = 0 and the binomial
theorem. The coefficient sequence

(
d
j

)
(−1)j is square summable and can be

expressed in terms of the gamma function Γ () as(
d

j

)
(−1)j =

Γ (−d+ j)
Γ (−d)Γ (j + 1)

. (2.22)

Two points are worthy to note. When d > 1
2 , an integer difference operator can

be applied first. Incidentally, in this case, the process becomes nonstationary
with unbounded variance. Robinson [85] calls such a process “less nonstation-
ary” than a unit root process, smoothly bridging the gulf between I(0)– and
I(1)–processes. Second, because in pratice no series with infinite observations
are at hand, one truncates the expression in Equation 2.21 for values yt−j

outside the sample range and sets yt−j = 0:

y∗t =
∞∑

j=0

Γ (−d+ j)
Γ (−d)Γ (j + 1)

yt−j , (2.23)

where y∗t assigns the fractional differenced series.

The now to be introduced ARFIMA(p, d, q) class has been developed
independently by Granger and Joyeux [36] and Hosking [47]. The estimation
and simulation of these models is implemented in R within the contributed
package fracdiff. Formally, an ARFIMA(p, d, q)–model is defined as follows.
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Definition 2.4. The series {yt} is an invertible and stationary ARFIMA(p,
d, q)–process if it can be written as

Δdyt = zt , (2.24)

where {zt}∞t=−∞ is an ARMA(p, q)–process such that zt = φp(L)−1θq(L)εt

and both lag polynomials have their roots outside the unit circle, where εt is a
zero-mean i.i.d. random variable with variance σ2 and d ∈ (−0.5, 0.5].

For parameter values 0 < d < 0.5, the process is long memory, and for the
range −0.5 < d < 0, the sum of absolute values of its autocorrelations tends
to a constant. In this case, the process exhibits negative dependency between
distant observations and is therefore termed “antipersistent” or to have “in-
termediate memory.” Regardless, whether the process {yt} is long memory or
intermediate memory, as long as d > −0.5, it has an invertible moving av-
erage representation. How is the long memory behavior incorporated in such
a process? It can be shown that the autocorrelation finction (ACF) of long
memory processes declines hyperbolically instead of exponentially as would
be the case for stable ARMA(p, q)–models. The speed of the decay depends
on the parameter value d. For instance, given a fractional white noise process
ARFIMA(0, d, 0), Granger and Joyeux [36] and Hosking [47] have proven that
the autocorrelations are given by

ρj =
Γ (j + d)Γ (1 − d)
Γ (j − d+ 1)Γ (d)

. (2.25)

The counterpart of this behavior in the frequency domain analysis is an un-
bounded spectral density as the frequency ω tends to zero. In the Rcode
example 2.2, an ARIMA(0.4, 0.0, 0.0) and an ARFIMA(0.4, 0.4, 0.0) have
been generated and their ACFs as well as spectral densities are displayed in
Figure 2.4.
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Rcode 2.2 ARMA versus ARFIMA model

1l i b r a r y ( f r a c d i f f )
2s e t . s eed (123456)
3# ARFIMA( 0 . 4 , 0 . 4 , 0 . 0 )
4y1 <− f r a c d i f f . s im (n=1000 , a r =0.4 , ma=0.0 , d=0.4)
5# ARIMA( 0 . 4 , 0 . 0 , 0 . 0 )
6y2 <− ar ima . s im ( model= l i s t ( a r =0.4) , n=1000)
7# Graph i c s
8op <− par ( no . r e a don l y=TRUE)
9l a y o u t ( mat r i x ( 1 : 6 , 3 , 2 , byrow=FALSE) )
10p l o t . t s ( y1$ s e r i e s , main=’Time s e r i e s p l o t o f l ong memory ’ ,

y l a b=’ ’ )
11a c f ( y1$ s e r i e s , l a g . max=100 , main=’ A u t o c o r r e l a t i o n s o f l ong

memory ’ )
12spectrum ( y1$ s e r i e s , main=’ S p e c t r a l d e n s i t y o f l ong memory ’ )
13p l o t . t s ( y2 , main=’Time s e r i e s p l o t o f s h o r t memory ’ , y l a b=’ ’

)
14a c f ( y2 , l a g . max=100 , main=’ A u t o c o r r e l a t i o n s o f s h o r t memory ’

)
15spectrum ( y2 , main=’ S p e c t r a l d e n s i t y o f s h o r t memory ’ )
16par ( op )

A long memory series with 1000 observations has been generated with the
function fracdiff.sim() contained in the package fracdiff, whereas the
short memory series has been calculated with the function arima.sim() (see
command lines 4 and 6).3 As can be clearly seen in Figure 2.4, the autocorre-
lations decline much more slowly compared with the stationary AR(1)–model
and its spectral density is as ω → 0 higher about a factor of 100.

By now, the question of how to estimate the fractional difference parameter
d or to detect the presence of long memory behavior in a time series is unan-
swered. We will now present three approaches to do so, whereas the last one
deals with the simultaneous estimation of all parameters in an ARFIMA(p,
d, q)–model.

The classic approach for detecting the presence of long-term memory can
be found in Hurst [48]. He proposed the rescaled range statistic, or shortly
the R/S statistic. This descriptive measure is defined as

R/S =
1
sT

⎡
⎣ max

1≤k≤T

k∑
j=1

(yj − ȳ) − min
1≤k≤T

k∑
j=1

(yj − ȳ)

⎤
⎦ , (2.26)

3 Functions for generating and modeling long memory series can also be found in
the contributed CRAN package fSeries [102].
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Fig. 2.4. Graphical display: ARIMA versus ARFIMA

where sT is the usual maximum likelihood standard deviation estimator: sT =
[ 1
T

∑T
j=1(yj−ȳ)2] 1

2 . This measure is always nonnegative because the deviations
from the sample mean ȳ sum up to zero. Hence, the maximum of the partial
sums will always be positive and likewise the minimum will always be negative.
Hurst [48] showed the probability limit of

plim
T→∞

{
T−H(

R/S

st
)
}

= const , (2.27)

where H assigns the Hurst coefficient. The Hurst coefficient is then estimated
as

Ĥ =
log(R/S)
log(T )

. (2.28)

A short memory process is associated with a value of H = 1
2 , and estimated

values greater than 1
2 are taken as hindsight for long memory behavior. There-

fore, the differencing parameter d can be estimated as d̂ = Ĥ − 1
2 . The R/S-

statistic can fairly easily be calculated in R, as shown in Rcode example 2.3.
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Rcode 2.3 R/S statistic

1l i b r a r y ( f r a c d i f f )
2s e t . s eed (123456)
3# ARFIMA( 0 . 0 , 0 . 3 , 0 . 0 )
4y <− f r a c d i f f . s im (n=1000 , a r =0.0 , ma=0.0 , d=0.3)
5# Demean the s e r i e s
6y .dm <− y$ s e r i e s
7max . y <− max(cumsum( y .dm) )
8min . y <− min (cumsum( y .dm) )
9sd . y <− sd ( y$ s e r i e s )
10RS <− ( max . y − min . y ) / sd . y
11H <− l o g (RS) / l o g (1000)
12d <− H − 0.5

Because the default mean in the function fracdiff is zero, no demeaning
has to be done. The estimated Hurst coefficient is 0.7843, which implies an
estimated value for d of 0.2843 that is close to its simulated value of 0.3.

Since the seminal paper of Hurst, the rescaled range statistic has received in-
tensive further research.4 Although it has been long established that the R/S
statistic has the ability to detect long-range dependence, it is however sensitive
to short-range dependence and heteroskedasticity.5 Hence, any incompatibil-
ity between the data and the predicted behavior of the R/S statistic under
the null hypothesis of no long-run dependence need not come from long-term
memory, but it may be merely a symptom of short-term autocorrelation. Lo
[58] proposes a modified rescaled range statistic to cope with this deficiency.
The modified R/Smod is defined as

R/Smod =
1

sT (q)

⎡
⎣ max

1≤k≤T

k∑
j=1

(yj − ȳ) − min
1≤k≤T

k∑
j=1

(yj − ȳ)

⎤
⎦ , (2.29)

where

sT (q) = sT + 2
q∑

j=1

ωj(q)γ̂j , ωj(q) = 1 − j

q + 1
with q < T . (2.30)

The maximum likehood standard deviation estimator is assigned by sT and
the jth-order sample autocorrelation by γ̂j . The sample autocorrelations are

4 For instance, see Mandelbrot and Wallis [65][66] and Davies and Harte [15] who
discuss alternative methods for estimating H. Anis and Loyd [2] determine the
small sample bias.

5 For instance, see Mandelbrot [63][64], Mandelbrot and Wallis [65], Davies and
Harte [15], Aydogan and Booth [3], and Lo [58].
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weighted by the function ωj(q) proposed in Newey and West [70]. However,
the choice of an appropriate order q is an unresolved issue.

A popular method for estimating d has been proposed by Geweke and
Porter-Hudak [33]. They suggested a semiparametric estimator of d in the
frequency domain. They consider as a data-generating process (1−L)dyt = zt,
where zt ∼ I(0). This process can be represented in the frequency domain

fy(ω) = 1 − exp(−iω)|−2dfz(ω) , (2.31)

where f(ω)y and f(ω)z assign the spectral densities of yt and zt, respectively.
Equation 2.31 can be transformed to

log{fy(ω)} = {4 sin2(
ω

2
)}−d + log{fz(ω)} , (2.32a)

log{fy(ωj)} = log{fz(0)} − d log{4 sin2(
ωj

2
)} + log{fu(ωj)

fz(0)
} . (2.32b)

The test regression is then a regression of the ordinates of the log spectral
density on a trigonemetric function of frequencies:

log{Iy(ωj)} = β1 + β2 log{4 sin2(
ωj

2
)} + νj , (2.33)

where νj = log{ fz(ωj)
fz(0) } and j = 1, . . . ,m. The error term is assumed to be i.i.d.

with zero mean and variance π
6 . The estimated order of fractional differencing

is equal to d̂ = −β̂2. Its significance can be tested with either the usual t ratio
distributed as Student t, or one can set the residual variance equal to π

6 . An
example of this method is Rcode example 2.4, where a fractionally differenced
series has been generated first with d = 0.3.

Rcode 2.4 Geweke and Porter-Hudak method

1l i b r a r y ( f r a c d i f f )
2s e t . s eed (123456)
3y <− f r a c d i f f . s im (n=1000 , a r =0.0 , ma=0.0 , d=0.3)
4y . spec <− spectrum ( y$ s e r i e s , p l o t=FALSE)
5l h s <− l o g ( y . spec $ spec )
6r h s <− l o g (4 ∗ ( s i n ( y . spec $ f r e q / 2) ) ˆ2)
7gph . r eg <− lm ( l h s ˜ r h s )
8gph . sum <− summary ( gph . r eg )
9s q r t ( gph . sum$cov . un s c a l e d ∗ p i / 6) [ 2 , 2 ]

The results for the simulated fractionally differenced series are given in Ta-
ble 2.1. The negative of the estimated coefficient β̂2 is 0.2968, which is close
to its true value of d = 0.3 and higly significant on both accounts, i.e., its
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Estimate Std. Error t value Pr(>|t|)
(Intercept) −1.6173 0.1144 −14.14 0.0000

rhs −0.2968 0.0294 −10.11 0.0000

Table 2.1. Results of Geweke and Porter-Hudak method

t ratio as well as the computed standard error with residual variance equal
to π

6 . Please note, a major issue with this approach is the selection of the
range of frequencies to include in the regression. In Rcode example 2.4, all
frequencies have been included, i.e., 500. Diebold and Rudebusch [20] have
set m =

√
T , Sowell [93] has suggested setting m to the shortest cycle asso-

ciated with long-run behavior. A third possibility would be to choose m such
that the estimated standard error of the regression is approximately equal to√
π/6.

Finally, the estimation of an ARFIMA(p, d, q)–model is implemented in
the contributed package fracdiff as function fracdiff(). The parameters
are estimated by an approximated maximum likelihood using the method of
Haslett and Raftery [39]. To lessen the computational burden, a range for the
parameter d can be supplied as functional argument. In the case of a “less
nonstationary” series, i.e., d > 1

2 , the estimation fails and the series must be
integer differenced first. In this case, the fractional differencing filter (1−L)d

is a combination of Equation 2.21 and integer differencing.

Summary

In this chapter, a more encompassing data-generating process that was intro-
duced into the literature by Campbell and Perron [9] has been presented. You
should now be familiar with the concepts of trend- versus difference-stationary
and the decomposition of a time series into a deterministic trend, a stochas-
tic trend, and a cyclical component. Furthermore, unit root processes have
been introduced as a subclass of random walk processes. How one applies a
sequential testing strategy to detect the underlying data-generating process
of a possible nonstationary time series was discussed. The important defi-
nitions of integrated, seasonally integrated, and fractionally integrated time
series processes have been presented too, whereas the latter can be viewed as
a bridge between stationary and unit root processes, thereby closing the circle
of the exposition in the first two chapters.

So far we have adressed univariate time series analysis only. The obstacles
and solutions in a multivariate context are the subject of the next and last
chapter of Part I.
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Exercises

1. Write a function in R that returns the critical values given in Fuller [32].
As functional arguments should the test type, the level of significance and
the sample size should be supplied.

2. Write a function in R that implements the ADF–test regression as shown
in Equation 2.14. The series, the inclusion of a constant, trend, both or
none, and the order of lagged differenced series should be included as
functional arguments. The function should return a summary object of
class lm.

3. Now include the function of Exercise 1 in the function of 2 such that the
relevant critical values are returned beside a summary object of class lm.

4. Generate various long and intermediate processes for different values of d
and AR(p) and MA(q) orders, and analyze their autocorrelation functions.

5. Write a function that estimates the Hurst coefficient, i.e., the R/S statistic
as well as its modified version by Lo [58] and the order of the difference
operator d.

6. Write a function for the single equation estimation of d as proposed by
Geweke and Porter-Hudak [33].

7. Apply the functions of Exercises 5 and 6 to the absolute logarithmic re-
turns of the stock indices contained in the data set EuStockMarkets. Can
you detect long memory behavior in any of these series?




